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Abstract. The Eynard-Orantin recursion formula provides an effective tool for certain enumer-

ation problems in geometry. The formula requires a spectral curve and the recursion kernel. We

present a uniform construction of the spectral curve and the recursion kernel from the unstable
geometries of the original counting problem. We examine this construction using four concrete ex-

amples: Grothendieck’s dessins d’enfants (or higher-genus analogue of the Catalan numbers), the

intersection numbers of tautological cotangent classes on the moduli stack of stable pointed curves,
single Hurwitz numbers, and the stationary Gromov-Witten invariants of the complex projective

line.
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1. Introduction

What is the mirror dual object of the Catalan numbers? We wish to make sense of
this question in the present paper. Since the homological mirror symmetry is a categorial
equivalence, it does not require the existence of underlying spaces to which the categories
are associated. By identifying the Catalan numbers with a counting problem similar to
Gromov-Witten theory, we come up with an equation

(1.1) x = z +
1

z

as their mirror dual. It is not a coincidence that (1.1) is the Landau-Ginzburg model in one
variable [2, 40]. Once the mirror dual object is identified, we can calculate the higher-genus
analogue of the Catalan numbers using the Eynard-Orantin topological recursion formula.
This recursion therefore provides a mechanism of calculating the higher-order quantum
corrections term by term.

The purpose of this paper is to present a systematic construction of genus 0 spectral curves
of the Eynard-Orantin recursion formula [25, 27]. Suppose we have a symplectic space X
on the A-model side. If the Gromov-Witten theory of X is controlled by an integrable
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system, then the homological mirror dual of X is expected to be a family of spectral curves
Σ. Let us consider the descendant Gromov-Witten invariants of X as a function in integer
variables. The Laplace transform of these functions are symmetric meromorphic functions
defined on the products of Σ. We expect that they satisfy the Eynard-Orantin topological
recursion on the B-model side defined on the curve Σ.

More specifically, we construct the spectral curve using the Laplace transform of the
descendant Gromov-Witten type invariants for the unstable geometries (g, n) = (0, 1) and
(0, 2). We give four concrete examples in this paper:

• The number of dessins d’enfants of Grothendieck, which can be thought of as higher-
genus analogue of the Catalan numbers.
• The ψ-class intersection numbers 〈τd1 · · · τdn〉g,n on the moduli spaceMg,n of pointed

stable curves [10, 15, 25, 46, 78].
• Single Hurwitz numbers [7, 24, 56].
• The stationary Gromov-Witten invariants of P1 [62, 66].

The spectral curves we construct are listed in Table 1. The Eynard-Orantin recursion
formula for the single Hurwitz numbers [4, 7, 24, 57] and the ψ-class intersection numbers
[25] are known. Norbury and Scott conjecture that the stationary Gromov-Witten invariants
of P1 also satisfy the Eynard-Orantin recursion [62]. A similar statement for the number of
dessins d’enfants does not seem to be known. We give a full proof of this fact in this paper.

Grothendieck’s Dessins

{
x = z + 1

z

y = −z

〈τd1 · · · τdn〉g,n

{
x = z2

y = −z

Single Hurwitz Numbers

{
x = ze1−z

y = ez−1

Stationary GW Invariants of P1

{
x = z + 1

z

y = − log(1 + z2)

Table 1. Examples of spectral curves.

Let Dg,n(µ1, . . . , µn) denote the weighted count of clean Belyi morphisms of smooth
connected algebraic curves of genus g with n poles of order (µ1, . . . , µn). We first prove

Theorem 1.1. For 2g−2+n ≥ 0 and n ≥ 1, the number of clean Belyi morphisms satisfies
the following equation:

(1.2) µ1Dg,n(µ1, . . . , µn) =
n∑
j=2

(µ1 + µj − 2)Dg,n−1(µ1 + µj − 2, µ[n]\{1,j})

+
∑

α+β=µ1−2

αβ

[
Dg−1,n+1(α, β, µ[n]\{1}) +

∑
g1+g2=g

ItJ={2,...,n}

Dg1,|I|+1(α, µI)Dg2,|J |+1(β, µJ)

]
,

where µI = (µi)i∈I for a subset I ⊂ [n] = {1, 2, . . . , n}.
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The simplest case

D0,1(2m) =
1

2m
Cm

is given by the Catalan number Cm = 1
m+1

(
2m
m

)
. The next case D0,2(µ1, µ2) is calculated in

[44, 45]. Note that the (g, n)-terms appears also on the right-hand side of (1.2). Therefore,
this is merely an equation, not an effective recursion formula.

Define the Eynard-Orantin differential form by

WD
g,n(t1, . . . , tn) = d1 · · · dn

∑
µ1,...,µn>0

Dg,n(µ1, . . . , µn)e−(µ1w1+···+µnwn),

where the wj-coordinates and tj-coordinates are related by

ewj =
tj + 1

tj − 1
+
tj − 1

tj + 1
.

Then

Theorem 1.2. The Eynard-Orantin differential forms for 2g−2+n > 0 satisfy the following
topological recursion formula

(1.3) WD
g,n(t1, . . . , tn)

= − 1

64

1

2πi

∫
γ

(
1

t+ t1
+

1

t− t1

)
(t2 − 1)3

t2
· 1

dt
· dt1

[
WD
g−1,n+1(t,−t, t2, . . . , tn)

+

n∑
j=2

(
WD

0,2(t, tj)Wg,n−1(−t, t2, . . . , t̂j , . . . , tn) +WD
0,2(−t, tj)Wg,n−1(t, t2, . . . , t̂j , . . . , tn)

)

+

stable∑
g1+g2=g

ItJ={2,3,...,n}

WD
g1,|I|+1(t, tI)W

D
g2,|J |+1(−t, tJ)

]
.

This is now a recursion formula, since the topological type (g′, n′) of the Belyi morphisms
appearing on the right-hand side satisfies

2g′ − 2 + n′ = (2g − 2 + n)− 1,

counting the contributions from the disjoint union of the domain curves additively. A
corollary to the recursion formula is a combinatorial identity between the number of clean
Belyi morphisms and the number of lattice points on the moduli spaceMg,n that has been
studied in [10, 55, 59, 60, 61].

Corollary 1.3.

(1.4) Dg,n(µ1, . . . , µn) =
∑
`1>

µ1
2

· · ·
∑

`n>
µn
2

n∏
i=1

2`i − µi
µi

(
µi
`i

)
Ng,n(2`1 − µi, · · · , 2`n − µn),

where Ng,n(µ1, . . . , µn) is defined by (4.18).

The recursion formula (1.3) is a typical example of the Eynard-Orantin recursion we
discuss in this paper. We establish this theorem by taking the Laplace transform of (1.2).
This is indeed a general theme. For every known case of the Eynard-Orantin recursion,
we establish its proof by taking the Laplace transform of the counting formula like (1.2).
For example, for the cases of single Hurwitz numbers [24, 57] and open Gromov-Witten
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invariants of C3 [81, 82], the counting formulas similar to (1.2) are called the cut-and-join
equations [29, 77, 49, 79, 80].

The Laplace transform plays a mysterious role in Gromov-Witten theory. We notice its
appearance in Kontsevich’s work [46] that relates the Euclidean volume of Mg,n and the

intersection numbers on Mg,n, and also in the work of Okounkov-Pandharipande [65] that
relates the single Hurwitz numbers and the enumeration of topological graphs. It has been
proved that in these two cases the Laplace transform of the quantities in question satisfies
the Eynard-Orantin recursion [10, 24, 26, 55, 57] for a particular choice of the spectral curve.

Then what is the role of the Laplace transform here? The answer we propose in this
paper is that the Laplace transform defines the spectral curve. Since the spectral curve is a
B-model object, the Laplace transform plays the role of mirror symmetry.

The Eynard-Orantin recursion formula is an effective tool in certain geometric enumer-
ation. The formula is originated in random matrix theory as a machinery to compute the
expectation value of a product of the resolvent of random matrices ([1], [21]). In [25, 27] Ey-
nard and Orantin propose a novel point of view, considering the recursion as a mechanism
of defining meromorphic symmetric differential forms Wg,n on the product Σn of a Riemann
surface Σ for every g ≥ 0 and n > 0. They derive in [25, 27] many beautiful properties that
these quantities satisfy, including modularity and relations to integrable systems.

The effectiveness of the topological recursion in string theory is immediately noticed
[14, 23, 51, 70]. A remarkable discovery, connecting the recursion formula and geometry, is
made by Mariño [51] and Bouchard, Klemm, Mariño and Pasquetti [6]. It is formulated as
the Remodeling Conjecture. This conjecture covers many aspects of both closed and open
Gromov-Witten invariants of arbitrary toric Calabi-Yau threefolds. One of their statements
says the following. Let X be an arbitrary toric Calabi-Yau threefold, and Σ its mirror curve.
Apply the Eynard-Orantin recursion formula to Σ. Then Wg,n calculates the open Gromov-
Witten invariants of X. The validity of the topological recursion of [25, 27] is not limited to
Gromov-Witten invariants. It has been applied to the HOMFLY polynomials of torus knots
[9], and understanding the role of quantum Riemann surfaces and certain Seiberg-Witten
invariants [35]. A speculation also suggests its relation to colored Jones polynomials and
the hyperbolic volume conjecture of knot complements [13].

From the very beginning, effectiveness of the Eynard-Orantin recursion in enumerative
geometry was suggested by physicists. Bouchard and Mariño conjecture in [7] that particu-
lar generating functions of single Hurwitz numbers satisfy the Eynard-Orantin topological
recursion. They have come up to this conjecture as the limiting case of the remodeling con-
jecture for C3 when the framing parameter tends to∞. The spectral curve for this scenario
is the Lambert curve x = ye−y. The Bouchard-Mariño conjecture is solved in [4, 24, 57].
The work [24] also influenced the solutions to the remodeling conjecture for C3 itself. The
statement on the open Gromov-Witten invariants was proved in [11, 81, 82], and the closed
case was proved in [5, 83].

The Eynard-Orantin topological recursion starts with a spectral curve Σ. Thus it is
reasonable to propose the recursion formalism whenever there is a natural curve in the
problem we study. Such curves may include the mirror curve of a toric Calabi-Yau threefold
[6, 51], the zero locus of an A-polynomial [13, 35], the Seiberg-Witten curves [35], the torus
on which a knot is drawn [9], and the character variety of the fundamental group of a knot
complement relative to SL(2,C) [13]. Now we ask the opposite question.

Question 1.4. If an enumerative geometry problem is given, then how do we find the
spectral curve, with which the Eynard-Orantin formalism may provide a solution?
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In every work of [5, 10, 11, 24, 25, 26, 27, 55, 57, 60, 62, 81, 82], the spectral curve is
considered to be given. How do we know that the particular choice of the spectral curve
is correct? Our proposal provides an answer to this question: the Laplace transform of
the unstable geometries (g, n) = (0, 1) and (0, 2) determines the spectral curve, and the
topological recursion formula itself. The key ingredients of the topological recursion are the
spectral curve and the recursion kernel that is determined by the differential forms W0,1

and W0,2. In the literature starting from [25], the word “Bergman kernel” is used for the
differential form W0,2. But it has indeed nothing to do with the classical Bergman kernel
in complex analysis. It is also treated as the universally given 2-form depending only on
the geometry of the spectral curve. We would rather emphasize in this paper that this
“kernel” is the Laplace transform of the annulus amplitude, which should be determined
by the counting problem we start with.

Although it is still vague, our proposal is the following

Conjecture 1.5 (The Laplace transform conjecture). If the unstable geometries (g, n) =
(0, 1) and (0, 2) make sense in a counting problem on the A-model side, then the Laplace
transform of the solution to these cases determines the spectral curve and the recursion
kernel of the Eynard-Orantin formalism, which is a B-model theory. Thus the Laplace
transform plays a role of mirror symmetry. The recursion then determines the solution to
the original counting problem for all (g, n).

The Eynard-Orantin recursion is a process of quantization [9, 35]. Thus the implication of
the conjecture is that quantum invariants are uniquely determined by the disk and annulus
amplitudes. For example, single Hurwitz numbers hg,µ are all determined by the first two
cases h0,(µ1) and h0,(µ1,µ2). The present paper and our previous work [24, 57] establish this
fact. The Lambert curve is the mirror dual of the number of trees.

The organization of this paper is the following. In Section 2 we present the Eynard-
Orantin recursion formalism for the case of genus 0 spectral curve. Higher genus situ-
ations will be discussed elsewhere. Sections 3 and 4 deal with the counting problem of
Grothendieck’s dessins d’enfants. We present our new results on this problem, which are
Theorem 1.1 and Theorem 1.2. We are inspired by Kodama’s beautiful talk [44] (that is
based on [45]) to come up with the generating function of the Catalan numbers as the spec-
tral curve for this problem. We are grateful to G. Gliner for drawing our attention to [44].
The counting problem of the lattice points on Mg,n of [10, 55, 59, 60] is closely related to
the counting of dessins, which is also treated in Section 4. The Eynard-Orantin recursion
becomes identical to the Virasoro constraint condition for the ψ-class intersection numbers
onMg,n. We discuss this relation in Section 5, using Kontsevich’s idea that the intersection

numbers on Mg,n are essentially the same as Euclidean volume of Mg,n. Section 6 is de-
voted to single Hurwitz numbers. In our earlier work [24, 57] we used the Lambert curve as
given. Here we reexamine the Hurwitz counting problem and derive the Lambert curve from
the unstable geometries. We then consider the Norbury-Scott conjecture [62] in Section 7,
which states that the generating functions of stationary Gromov-Witten invariants of P1

satisfy the Eynard-Orantin recursion. We are unable to prove this conjecture. What we
establish in this section is why the spectral curve of [62] is the right choice for this problem.

The subject of this paper is closely related to random matrix theory. Since the matrix
model side of the story has been extensively discussed by the original authors [27], we do
not deal with that aspect in the current paper.
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2. The Eynard-Orantin differential forms and the topological recursion

We use the following mathematical definition for the topological recursion of Eynard-
Orantin for a genus 0 spectral curve. The differences between our definition and the original
formulation found in [25, 27] are of the philosophical nature. Indeed, the original formula
and ours produce the exact same answer in all examples we examine in this paper.

Definition 2.1. We start with P1 with a preferred coordinate t. Let S ⊂ P1 be a finite
collection of points and compact real curves such that the complement Σ = P1 \ S is
connected. The spectral curve of genus 0 is the data (Σ, π) consisting of a Riemann surface
Σ and a simply ramified holomorphic map

(2.1) π : Σ 3 t 7−→ π(t) = x ∈ P1

so that its differential dx has only simple zeros. Let us denote by R = {p1, . . . , pr} ⊂ Σ the
ramification points, and by

U = trj=1Uj

the disjoint union of small neighborhood Uj around each pj such that π : Uj → π(Uj) ⊂ P1

is a double-sheeted covering ramified only at pj . We denote by t̄ = s(t) the local Galois
conjugate of t ∈ Uj . The canonical sheaf of Σ is denoted by K. Because of our choice
of the preferred coordinate t, we have a preferred basis dt for K and ∂/∂t for K−1. The
meromorphic differential forms Wg,n(t1, . . . , tn), g = 0, 1, 2, . . . , n = 1, 2, 3, . . . , are said
to satisfy the Eynard-Orantin topological recursion if the following conditions are
satisfied:

(1) W0,1(t) ∈ H0(Σ,K).

(2) W0,2(t1, t2) = dt1·dt2
(t1−t2)2 − π∗ dx1·dx2

(x1−x2)2 ∈ H0(Σ× Σ,K⊗2(2∆)), where ∆ is the diagonal

of Σ× Σ.
(3) The recursion kernel Kj(t, t1) ∈ H0(Uj ×C, (K−1

Uj
⊗K)(∆)) for t ∈ Uj and t1 ∈ C is

defined by

(2.2) Kj(t, t1) =
1

2

∫ t̄
t W0,2(·, t1)

W0,1(t̄)−W0,1(t)
.

The kernel is an algebraic operator that multiplies dt1 while contracts dt.
(4) The general differential forms Wg,n(t1, . . . , tn) ∈ H0(Σn,K(∗R)⊗n) are meromorphic

symmetric differential forms with poles only at the ramification points R for 2g −
2 + n > 0, and are given by the recursion formula

(2.3) Wg,n(t1, t2, . . . , tn) =
1

2πi

r∑
j=1

∮
Uj

Kj(t, t1)

[
Wg−1,n+1(t, t̄, t2, . . . , tn)

+

No (0, 1) terns∑
g1+g2=g

ItJ={2,3,...,n}

Wg1,|I|+1(t, tI)Wg2,|J |+1(t̄, tJ)

]
.

Here the integration is taken with respect to t ∈ Uj along a positively oriented simple
closed loop around pj , and tI = (ti)i∈I for a subset I ⊂ {1, 2, . . . , n}.

(5) The differential form W1,1(t1) requires a separate treatment because W0,2(t1, t2) is
regular at the ramification points but has poles elsewhere.

(2.4) W1,1(t1) =
1

2πi

r∑
j=1

∮
Uj

Kj(t, t1)

[
W0,2(u, v) + π∗

dx(u) · dx(v)

(x(u)− x(v))2

]∣∣∣∣u=t
v=t̄

.
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Let y : Σ−→C be a holomorphic function defined by the equation

(2.5) W0,1(t) = y(t)dx(t).

Equivalently, we can define the function by contraction y = iXW0,1, where X is the
vector field on Σ dual to dx(t) with respect to the coordinate t. Then we have an
embedding

Σ 3 t 7−→ (x(t), y(t)) ∈ C2.

Remark 2.2. The recursion (2.3) also applies to (g, n) = (0, 3), which gives W0,3 in terms
of W0,2. In [25, Theorem 4.1] an equivalent but often more useful formula for W0,3 is given:

(2.6) W0,3(t1, t2, t3) =
1

2πi

r∑
j=1

∮
Uj

W0,2(t, t1)W0,2(t, t2)W0,2(t, t3)

dx(t) · dy(t)
.

3. Counting Grothendieck’s dessins d’enfants

The A-model side of the problem we consider in this section is the counting problem of
Grothendieck’s dessins d’enfants (see for example, [71, 72]) for a fixed topological type of
Belyi morphisms [3]. Gromov-Witten theory of an algebraic variety X is an intersection
theory of naturally defined divisors on the moduli stackMg,n(X) of stable morphisms from
n-pointed algebraic curves of genus g to the target variety X. Since we are considering
tautological divisors, their 0-dimensional intersection points are also natural. These points
determine a finite set on Mg,n via the stabilization morphism. If we expect that the
Gromov-Witten theory of X satisfies the Eynard-Orantin recursion, then we should also
expect that the counting problem of naturally defined finite sets of points on Mg,n may
satisfy the Eynard-Orantin recursion.

Pointed curves defined over Q form a dense subset of Mg,n. To specify n, we need to

use Belyi morphisms. When we identify a curve over Q with a Belyi morphism, a natural
counting problem arises by considering the profile of the Balyi morphism at the branched
points. In this way we arrive at canonically defined finite sets of points on Mg,n.

More specifically, consider a Belyi morphism

(3.1) b : C−→P1

of a smooth algebraic curve C of genus g. This means b is branched only over 0, 1,∞ ∈
P1. By Belyi’s Theorem [3], C is defined over Q. Let q1, . . . , qn be poles of b of orders
(µ1, . . . , µn) ∈ Zn+. This vector of positive integers is the profile of b at ∞. In our enumera-
tion we label all poles of b. Therefore, an automorphism of a Balyi morphism preserves the
set of poles point-wise.

A clean Belyi morphism is a special class of Belyi morphism of even degree that has profile
(2, 2, . . . , 2) over the branch point 1 ∈ P1. We note that a complex algebraic curve is defined
over Q if and only if it admits a clean Belyi morphism. Let us denote by Dg,n(µ1, . . . , µn)
the number of genus g clean Belyi morphisms of profile (µ1, . . . , µn) at ∞ ∈ P1. This is the
number we study in this section.

We first derive a recursion equation among Dg,n(µ1, . . . , µn) for all (g, n). This relation
does not provide an effective recursion formula, because Dg,n(µ1, . . . , µn) appears in the
equation in a complicated manner. We then compute the Laplace transform

FDg,n(w1, . . . , wn) =
∑

µ1,...,µn>0

Dg,n(µ1, . . . , µn) e−(µ1w1+···+µnwn),
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and rewrite the recursion equation in terms of the Laplace transformed functions. We then
show that the symmetric differential forms

WD
g,n = d1 · · · dnFDg,n

satisfy the Eynard-Orantin recursion formula. This time it is an effective recursion formula
for the generating functions WD

g,n of the number Dg,n(µ1, . . . , µn) of clean Belyi morphisms.
Grothendieck visualized the clean Belyi morphism by considering the inverse image

(3.2) Γ = b−1([0, 1])

of the closed interval [0, 1] ⊂ P1 by b (see his “Esquisse d’un programme” reprinted in [72]).
This is what we call dessin d’enfant. It is a topological graph drawn on the algebraic curve
C being considered as a Riemann surface. We call each pre-image of 0 ∈ P1 by b a vertex
of Γ. Since b has profile (2, . . . , 2) over 1 ∈ P1, a pre-image of 1 is the midpoint of an edge
of Γ. The complement C \ Γ of Γ in C is the disjoint union of n disks centered at each qi.
By abuse of terminology we call each disk a face of Γ. Then by Euler’s formula we have

2− 2g = |b−1(0)| − |b−1(1)|+ n.

A dessin is a special kind of metric ribbon graph. A ribbon graph of topological type (g, n)
is the 1-skeleton of a cell-decomposition of a closed oriented topological surface C of genus g
that decomposes the surface into a disjoint union of 0-cells, 1-cells, and 2-cells. The number
of 2-cells is n. Alternatively, a ribbon graph can be defined as a graph with a cyclic order
assigned to the incident half-edges at each vertex. When a positive real number, the length,
is assigned to each edge of a ribbon graph, we call it a metric ribbon graph. A dessin is
thus a metric ribbon graph with the same length given to each edge. We usually consider
this length to be 1, so the distance between 0 and 1 on P1 is measured as 1

2 .
The concrete construction of [54] gives a Belyi morphism to any given dessin. Thus the

enumeration of clean Belyi morphism is equivalent to the enumeration of ribbon graphs,
where we assign length 1 to every edge. The original interest of dessins lies in the fact that
the absolute Galois group Gal(Q/Q) acts faithfully on the set of dessins.

An alternative description of a Belyi morphism is to use the dual graph

(3.3) Γ̌ = b−1([1, i∞]),

where

[1, i∞] = {1 + iy | 0 ≤ y ≤ ∞} ⊂ P1

is the vertical half-line on P1 with real part 1. This time the graph Γ̌ has n labeled vertices
of degrees (µ1, . . . , µn). Since we consider ribbon graphs in the context of canonical cell-
decomposition of the moduli spaceMg,n, we use the terminology dessin for a graph Γ̌ dual
to a ribbon graph Γ. This distinction is important, because when we count the number of
ribbon graphs, we consider the automorphism of a graph that preserves each face, while
the automorphism group of the dual graph, i.e., a dessin, preserves each vertex point-wise,
but can permute faces. In this dual picture, we define the number of dessins with the
automorphism factor by

(3.4) Dg,n(µ1, . . . , µn) =
∑

Γ̌ dessin of
type (g,n)

1

|AutD(Γ̌)|
,

where Γ̌ is a dessin of genus g with n labeled vertices with prescribed degrees (µ1, . . . , µn),
and AutD(Γ̌) is the automorphism of Γ̌ preserving each vertex point-wise.
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Our theme is to find the spectral curve of the theory by looking at the problem for
unstable curves (g, n) = (0, 1) and (0, 2). The dessins counted in D0,1(µ) for an integer
µ ∈ Z+ are spherical graphs that contain only one vertex of degree µ. Since any edge of
this graph has to start and end with the same vertex, it is a loop, and thus µ is even. So let
us put µ = 2m. Each graph contributes with the weight 1/|AutD(Γ̌)| in the enumeration of
the number D0,1(µ). This automorphism factor makes counting more difficult. Note that
the automorphism group of a spherical dessin with a single vertex is a subgroup of Z/(2m)Z
that preserves the graph. If we place an outgoing arrow to one of the 2m half-edges incident
to the unique vertex (see Figure 3.1), then we can kill the automorphism altogether. Since
there are 2m choices of placing such an arrow, the number of arrowed graphs is 2mD0,1(2m).
This is now an integer. By a simple bijection argument with the number of arrangements
of m pairs of parentheses, we see that

(3.5) 2mD0,1(2m) = Cm =
1

m+ 1

(
2m

m

)
,

where Cm is the m-th Catalan number. We note that the Catalan numbers appear in the
same context of counting graphs in [37].

Figure 3.1. An arrowed dessin d’enfant of genus 0 with one vertex.

Define the Laplace transform of D0,1(µ) by

(3.6) F̃D0,1 =
∞∑
m=1

D0,1(2m)e−2mw.

Then the Eynard-Orantin differential

W̃D
0,1 = dF̃D0,1 = −

∞∑
m=1

2mD0,1(2m)e−2mwdw = −
∞∑
m=1

Cme
−2mwdw

is a generating function of the Catalan numbers. Actually a better choice is (see [44, 45])

(3.7) z(x) =

∞∑
m=0

Cm
1

x2m+1
=

1

x
+

1

x3
+

2

x5
+

5

x7
+

14

x9
+

42

x11
+ · · · .

The radius of convergence of this infinite Laurent series is 2, hence the series converges
absolutely for |x| > 2. The inverse function of z = z(x) near (x, z) = (∞, 0) is given by

(3.8) x = z +
1

z
.

This can be easily seen by solving the quadratic equation z2 − xz + 1 = 0 with respect to
z, which is equivalent to the quadratic recursion

Cm+1 =
∑

i+j=m

Ci · Cj



10 O. DUMITRESCU, M. MULASE, B. SAFNUK, AND A. SORKIN

of Catalan numbers. To take advantage of these simple formulas, let us define

(3.9) x = ew

and allow the m = 0 term in the Eynard-Orantin differential:

(3.10) WD
0,1 = −

∞∑
m=0

Cm
dx

x2m+1
.

Accordingly the Laplace transform of D0,1(2m) needs to be modified:

(3.11) FD0,1 =

∞∑
m=1

D0,1(2m) e−2mw − w =

∞∑
m=1

D0,1(2m)
1

x2m
− log x.

Although numerically D0,1(0) = 0, its infinitesimal behavior is given by

lim
m→0

D0,1(2m)

x2m
= − log x,

which is consistent with
lim
m→0

2mD0,1(2m) = C0 = 1.

From (3.7) and (3.12), we obtain

(3.12) WD
0,1 = −z(x) dx.

In light of (2.5), we have identified the spectral curve for the counting problem of dessins
Dg,n(µ). It is given by

(3.13)

{
x = z + 1

z

y = −z
.

To compute the recursion kernel of (2.2), we need to identify D0,2(µ1, µ2) for the other
unstable geometry (g, n) = (0, 2). In the dual graph picture, D0,2(µ1, µ2) counts the number

of spherical dessins Γ̌ with two vertices of degree µ1 and µ2, counted with the weight of
1/|AutD(Γ̌)|. The computation was done by Kodama and Pierce in [45, Theorem 3.1]. We
also refer to a beautiful lecture by Kodama [44].

Proposition 3.1 ([45]). The number of spherical dessinss Γ̌ with two vertices of degrees j
and k, counted with the weight of 1/|AutD(Γ̌)|, is given by the following formula.

(3.14) D0,2(µ1, µ2) =



1
2k

(
2k
k

)
µ1 = 0, µ2 = 2k 6= 0

1
4

1
j+k

(
2j
j

)(
2k
k

)
µ1 = 2j 6= 0, µ2 = 2k 6= 0

1
j+k+1

(
2j
j

)(
2k
k

)
µ1 = 2j + 1, µ2 = 2k + 1

.

All other cases D0,2(µ1, µ2) = 0. Here the automorphism group AutD(Γ̌) is the topological
graph automorphisms that fix each vertex, but may permute faces.

Remark 3.2. The first case is irregular. For µ1 = 0, the second vertex has an even degree,
and hence we have Ck/(2k) graphs. Note that this graph has k + 1 faces due to Euler’s
formula 2 = 1 − k + (k + 1). The degree 0 vertex has to be placed in one of these faces,
which makes the total number of graphs

k + 1

2k
Ck =

1

2k

(
2k

k

)
.
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However, we are counting only connected graphs. Hence degree 0 vertices are not allowed
in our counting.

In general the number of dessins satisfies the following:

Theorem 3.3. For g ≥ 0 and n ≥ 1 subject to 2g− 2 + n ≥ 0, the number of dessins (3.4)
satisfies a recursion equation

(3.15) µ1Dg,n(µ1, . . . , µn) =

n∑
j=2

(µ1 + µj − 2)Dg,n−1

(
µ1 + µj − 2, µ[n]\{1,j}

)
+

∑
α+β=µ1−2

αβ

[
Dg−1,n+1(α, β, µ[n]\{1}) +

∑
g1+g2=g

ItJ={2,...,n}

Dg1,|I|+1(α, µI)Dg2,|J |+1(β, µJ)

]
,

where µI = (µi)i∈I for a subset I ⊂ [n] = {1, 2, . . . , n}. The last sum is over all partitions
of the genus g and the index set {2, 3, . . . , n} into two pieces.

Remark 3.4. Note that when g1 = 0 and I = ∅, Dg,n appears in the right-hand side of
(3.15). Therefore, this is an equation of the number of dessins, not a recursion formula.

Proof. Consider the collection of genus g dessins with n vertices labeled by the index set
[n] = {1, 2, . . . , n} and of degrees (µ1, . . . , µn). The left-hand side of (3.15) is the number
of dessins with an outward arrow placed on one of the incident edges at the vertex 1. The
equation is based on the removal of this edge. There are two cases.

Case 1. The arrowed edge connects the vertex 1 and vertex j > 1. We then remove the
edge and put the two vertices 1 and j together as shown in Figure 3.2. This operation is
better described as shrinking the arrowed edge to a point. The resulting dessin has one less
vertices, but the genus is the same as before. The degree of the newly created vertex is
µ1 + µj − 2, while the degrees of all other vertices are unaffected.

1 j

Figure 3.2. The operation that shrinks the arrowed edge to a point and joins two
vertices labeled by 1 and j together.

To make the bijection argument, we need to be able to reconstruct the original dessin from
the new one. Since both µ1 and µj are given as the input value, we have to specify which
edges go to vertex 1 and which go to j when we separate the vertex of degree µ1 + µj − 2.
For this purpose, what we need is a marker on one of the incident edges. We group the
marked edge and µi − 2 edges following it according to the cyclic order. The rest of the
µj−1 incident edges are also grouped. Then we insert an edge and separate the vertex into
two vertices, 1 and j, so that the first group of edges are incident to vertex 1 and the second
group is incident to j, honoring their cyclic orders (see Figure 3.2). The contribution from
this case is therefore

n∑
j=2

(µ1 + µj − 2)Dg,n−1

(
µ1 + µj − 2, µ[n]\{1,j}

)
.
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Case 2. The arrowed edge forms a loop that is attached to vertex 1. We remove this loop
from the dessin, and separate the vertex into two vertices. The loop classifies all incident
half-edges, except for the loop itself, into two groups: the ones that follow the arrowed
half-edge in the cyclic order but before the incoming end of the loop, and all others (see
Figure 3.3). Let α be the number of half-edges in the first group, and β the rest. Then
α+ β = µ1 − 2, and we have created two vertices of degrees α and β.

To recover the original dessin from the new one, we need to mark a half-edge from each
vertex so that we can put the loop back to the original place. The number of choices of
these markings is αβ.

Figure 3.3. The operation that removes a loop, and separates the incident vertex
into two vertices.

The operation of the removal of the loop and the separation of the vertex into two vertices
certainly increases the number of vertices from n to n + 1. This operation also affects the
genus of the dessin. If the resulting dessin is connected, then g goes down to g − 1. If the
result is the disjoint union of two dessins of genera g1 and g2, then we have g = g1 + g2.
Altogether the contribution from this case is

∑
α+β=µ1−2

αβ

[
Dg−1,n+1(α, β, µ[n]\{1}) +

∑
g1+g2=g

ItJ={2,...,n}

Dg1,|I|+1(α, µI)Dg2,|J |+1(β, µJ)

]
.

Note that the outward arrow we place defines the two groups of incident half-edges uniquely,
since one is after and the other before the arrowed half-edge according to the cyclic order.
Thus we do not need to symmetrize α and β. Indeed, if the arrow is placed in the other
end of the loop, then α and β are interchanged.

The right-hand side of the equation (3.15) is the sum of the above two contributions. �

Remark 3.5. The equation (3.15) is considerably simpler, compared to the recursion for-
mula for the number of ribbon graphs with integral edge lengths that is proved in [10,
Theorem 3.3]. The edge removal operation of [10] is the dual operation of the edge shrink-
ing operations of Case 1 and Case 2 above, and the placement of an arrow corresponds to
the ciliation of [10]. In the dual picture, the graphs enumerated in [10] are more restrictive
than arbitrary clean dessins, which makes the equation more complicated. We also note
that [10, Theorem 3.3] is a recursion formula, not just a mere relation like what we have in
(3.15). In this regard, (3.15) is indeed similar to the cut-and-join equation (6.28) of [29, 77].
We will come back to this point in Section 6.

The relation (3.15) becomes an effective recursion formula after taking the Laplace trans-
form.
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4. The Laplace transform of the number of dessins and ribbon graphs

In this section we derive the Eynard-Orantin recursion formula for the generating func-
tions of the number of dessins. The key technique is the Laplace transform.

Since the projection x = z + 1/z of the spectral curve to the x-coordinate plane has
two ramification points z = ±1, it is natural to introduce a coordinate that has these
ramification points at 0 and ∞. So we define

(4.1) z =
t+ 1

t− 1
.

Proposition 4.1. The Laplace transform of D0,2(µ1, µ2) is given by

(4.2) FD0,2(t1, t2)
def
=

∑
µ1,µ2>0

D0,2(µ1, µ2) e−(µ1w1+µ2w2) = − log
(
1− z(x1)z(x2)

)
= log(t1 − 1) + log(t2 − 1)− log(−2(t1 + t2)),

where z(x) is the generating function of the Catalan numbers (3.7), and the variables
t, w, x, z are related by (3.9), (3.13), and (4.1). We then have

(4.3) WD
0,2(t1, t2) = d1d2F

D
0,2(t1, t2) =

dt1 · dt2
(t1 − t2)2

− dx1 · dx2

(x1 − x2)2
=

dt1 · dt2
(t1 + t2)2

.

Proof. In terms of x = ew, the Laplace transform (4.2) is given by

(4.4)
∑

µ1,µ2>0

D0,2(µ1, µ2) e−(µ1w1+µ2w2)

=
1

4

∞∑
j,k=1

1

j + k

(
2j

j

)(
2k

k

)
1

x2j
1

1

x2k
2

+
∞∑

j,k=0

1

j + k + 1

(
2j

j

)(
2k

k

)
1

x2j+1
1

1

x2k+1
2

.

Since

(4.5) dx =

(
1− 1

z2

)
dz,

we have

(4.6) x
d

dx
=

z + 1
z

1− 1
z2

d

dz
=
z(z2 + 1)

z2 − 1

d

dz
.

To make the computation simpler, let us introduce

(4.7) ξ0(x) =

∞∑
m=0

(
2m

m

)
1

x2m+1
.

This will also be used in Section 7. In terms of z and t we have

(4.8) ξ0(x) =
1

2

(
1− x d

dx

) ∞∑
m=0

1

m+ 1

(
2m

m

)
1

x2m+1

=
1

2

(
1− z(z2 + 1)

z2 − 1

d

dz

)
z = − z

z2 − 1
= − t

2 − 1

4t
.

Note that

−
(
x1

d

dx1
+ x2

d

dx2

)(
1

4

∞∑
j,k=1

1

j + k

(
2j

j

)(
2k

k

)
1

x2j
1

1

x2k
2
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+
∞∑

j,k=0

1

j + k + 1

(
2j

j

)(
2k

k

)
1

x2j+1
1

1

x2k+1
2

)

=
1

2
(x1ξ0(x1)− 1)(x2ξ0(x2)− 1) + 2ξ0(x1)ξ0(x2)

= 2z1z2
1 + z1z2

(z1
1 − 1)(z2

2 − 1)

= −
(
z1(z2

1 + 1)

z2
1 − 1

d

dz1
+
z2(z2

2 + 1)

z2
2 − 1

d

dz2

)
(− log(1− z1z2)) .

In other words, we have a partial differential equation(
x1

d

dx1
+ x2

d

dx2

)(
FD0,2(t1, t2) + log(1− z1z2)

)
= 0

for a holomorphic function in x1 and x2 defined for |x1| >> 2 and |x2| >> 2. Since the first
few terms of the Laurent expansions of − log

(
1 − z(x1)z(x2)

)
using (3.7) agree with the

first few terms of the sums of (4.4), we have the initial condition for the above differential
equation. By the uniqueness of the solution to the Euler differential equation with the
initial condition, we obtain (4.2). Equation (4.3) follows from differentiation of (4.2). �

In terms of the t-coordinate of (4.1), the Galois conjugate of t ∈ Σ under the projection
x : Σ−→C is −t. Therefore, the recursion kernel for counting of dessins is given by

(4.9) KD(t, t1) =
1

2

∫ −t
t WD

0,2(·, t1)

WD
0,1(−t)−WD

0,1(t)
=

1

2

(
1

t+ t1
+

1

t− t1

)
1

t+1
t−1 −

t−1
t+1

· 1

dx
· dt1

= − 1

64

(
1

t+ t1
+

1

t− t1

)
(t2 − 1)3

t2
· 1

dt
· dt1.

One of the first two stable cases (2.4) gives us

(4.10) WD
1,1(t1) =

1

2πi

∫
γ
KD(t, t1)

[
WD

0,2(t,−t) +
dx · dx1

(x− x1)2

]
= − 1

2πi

∫
γ
KD(t, t1)

dt · dt
4t2

= − 1

128

(t21 − 1)3

t41
dt1,

where the integration contour γ consists of two concentric circles of a small radius and a
large radius centered around t = 0, with the inner circle positively and the outer circle
negatively oriented (Figure 4.1). The (g, n) = (0, 3) case is given by

(4.11) WD
0,3(t1, t2, t3) =

1

2πi

∫
γ

WD
0,2(t, t1)WD

0,2(t, t2)WD
0,2(t, t3)

dx(t) · dy(t)

= − 1

16

[
1

2πi

∫
γ

(t2 − 1)2(t− 1)2

(t+ t1)2(t+ t2)2(t+ t3)2
· dt
t

]
dt1dt2dt3

= − 1

16

(
1− 1

t21 t
2
2 t

2
3

)
dt1dt2dt3.

Remark 4.2. The general formula (2.3) for (g, n) = (0, 3) also gives the same answer. This
is because WD

0,2 acts as the Cauchy differentiation kernel.
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WD
0,3(t1, t2, t3) =

1

2πi

∫
γ
KD(t, t1)

[
WD

0,2(t, t2)WD
0,2(−t, t3) +WD

0,2(t, t3)WD
0,2(−t, t2)

]
=

1

64

[
1

2πi

∫
γ

(
1

t+ t1
+

1

t− t1

)
(t2 − 1)3

t2

(
1

(t+ t2)2(t− t3)2
+

1

(t+ t3)2(t− t2)2

)
dt

]
· dt1dt2dt3

=

[
− 1

32

(t21 − 1)3

t21

(
1

(t1 + t2)2(t1 − t3)2
+

1

(t1 + t3)2(t1 − t2)2

)
− 1

16

∂

∂t2

(
t2

t22 − t21
(t22 − 1)3

t22

1

(t2 + t3)2

)
− 1

16

∂

∂t3

(
t3

t23 − t21
(t23 − 1)3

t23

1

(t2 + t3)2

)]
dt1dt2dt3 = − 1

16

(
1− 1

t21 t
2
2 t

2
3

)
dt1dt2dt3.

t1

t1tj

tj

t-plane

dt

r

r

Figure 4.1. The integration contour γ. This contour encloses an annulus bounded
by two concentric circles centered at the origin. The outer one has a large radius r >
maxj∈N |tj | and the negative orientation, and the inner one has an infinitesimally
small radius with the positive orientation.

Theorem 4.3. Let us define the Laplace transform of the number of Grothendieck’s dessins
by

(4.12) FDg,n(t1, . . . , tn) =
∑
µ∈Zn+

Dg,n(µ)e−(µ1w1+···+µnwn),

where the coordinate ti is related to the Laplace conjugate coordinate wj by

ewj =
tj + 1

tj − 1
+
tj − 1

tj + 1
.

Then the differential forms

(4.13) WD
g,n(t1, . . . , tn) = d1 · · · dnFDg,n(t1, . . . , tn)

satisfy the Eynard-Orantin topological recursion

(4.14) WD
g,n(t1, . . . , tn)

= − 1

64

1

2πi

∫
γ

(
1

t+ t1
+

1

t− t1

)
(t2 − 1)3

t2
· 1

dt
· dt1

×

[
n∑
j=2

(
WD

0,2(t, tj)Wg,n−1(−t, t2, . . . , t̂j , . . . , tn) +WD
0,2(−t, tj)Wg,n−1(t, t2, . . . , t̂j , . . . , tn)

)
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+WD
g−1,n+1(t,−t, t2, . . . , tn) +

stable∑
g1+g2=g

ItJ={2,3,...,n}

WD
g1,|I|+1(t, tI)W

D
g2,|J |+1(−t, tJ)

]
.

The last sum is restricted to the stable geometries. In other words, the partition should
satisfies 2g1 − 1 + |I| > 0 and 2g2 − 1 + |J |. The spectral curve Σ of the Eynard-Orantin
recursion is given by {

x = z + 1
z

y = −z
with the preferred coordinate t given by

t =
z + 1

z − 1
.

We give the proof of this theorem in the appendix.
The problem of counting dessins is closely related to the counting problem of the lattice

points of the moduli space Mg,n of smooth n-pointed algebraic curves of genus g studied
in [59, 60]. Let us briefly recall the combinatorial model for the moduli space Mg,n due
to Thurston (see for example, [73]), Harer [36], Mumford [58], and Strebel [75], following
[54, 55]. For a given ribbon graph Γ with e = e(Γ) edges, the space of metric ribbon

graphs is Re(Γ)
+ /Aut(Γ), where the automorphism group acts by permutations of edges (see

[54, Section 1]). When we consider ribbon graph automorphisms, we restrict ourselves that
Aut(Γ) fixes each 2-cell of the cell-decomposition. We also require that every vertex of a
ribbon graph has degree 3 or more. Using the canonical holomorphic coordinate system
on a topological surface of [54, Section 4] corresponding to a metric ribbon graph, and the
Strebel differentials [75], we have an isomorphism of topological orbifolds [36, 58]

(4.15) Mg,n × Rn+ ∼= Rg,n

for (g, n) in the stable range. Here

Rg,n =
∐

Γ ribbon graph
of type (g,n)

Re(Γ)
+

Aut(Γ)

is an orbifold consisting of metric ribbon graphs of a given topological type (g, n). The
gluing of orbi-cells is done by making the length of a non-loop edge tend to 0. The space
Rg,n is a smooth orbifold (see [54, Section 3] and [73]). We denote by π : Rg,n −→ Rn+
the natural projection via (4.15), which is the assignment of the perimeter length of each
boundary to a given metric ribbon graph.

Take a ribbon graph Γ. Since Aut(Γ) fixes every boundary component of Γ, they are
labeled by [n] = {1, 2 . . . , n}. For the moment let us give a label to each edge of Γ by an
index set [e] = {1, 2, . . . , e}. The edge-face incidence matrix is defined by

(4.16)
AΓ =

[
aiη
]
i∈[n], η∈[e]

;

aiη = the number of times edge η appears in face i.

Thus aiη = 0, 1, or 2, and the sum of the entries in each column is always 2. The Γ con-
tribution of the space π−1(µ1, . . . , µn) = Rg,n(µ) of metric ribbon graphs with a prescribed
perimeter µ = (µ1, . . . , µn) ∈ Rn+ is the orbifold polytope

{x ∈ Re+ | AΓx = µ}
Aut(Γ)

,
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where x = (`1, . . . , `e) is the collection of edge lengths of the metric ribbon graph Γ. We
have

(4.17)
∑
i∈[n]

µi =
∑
i∈[n]

∑
η∈[e]

aiη`η = 2
∑
η∈[e]

`η.

Now let µ ∈ Zn+ be a vector consisting of positive integers. The lattice point counting
function we consider is defined by

(4.18) Ng,n(µ) =
∑

Γ ribbon graph
of type (g,n)

∣∣{x ∈ Zn+ | AΓx = µ}
∣∣

|Aut(Γ)|

for (g, n) in the stable range ([10, 55, 59, 60]).
To find the spectral curve for lattice point counting, we need to identify the unstable

moduli M0,1 and the ribbon graph space R0,1. We recall that the orbifold isomorphism
(4.15) holds for (g, n) in the stable range by defining Rg,n as the space of metric ribbon
graphs of type (g, n) without vertices of degrees 1 and 2. For (g, n) = (0, 1), there are no
ribbon graphs satisfying these conditions. Let vj denote the number of degree j vertices in
a ribbon graph Γ of type (g, n). Then we have∑

j≥1

jvj = 2e,
∑
j≥1

vj = v,

where v is the total number of vertices of Γ. Hence

(4.19) 2(2g − 2 + n) = 2e− 2v =
∑
j≥1

(j − 2)vj = −v1 +
∑
j≥3

(j − 2)vj .

It follows that the number of degree 1 vertices v1 is positive when (g, n) = (0, 1). Thus we
conclude that there is no spectral curve for this counting problem.

Still we can consider the Laplace transform of the number (4.18) of lattice points of the
moduli space Mg,n with a prescribed perimeter length. We define for every stable (g, n)

(4.20) FLg,n(t1, . . . , tn) =
∑
µ∈Zn+

Ng,n(µ)
n∏
i=1

1

zµii
,

and the Eynard-Orantin differential forms by

(4.21) WL
g,n(t1, . . . , tn) = d1 · · · dnFLg,n(t1, . . . , tn).

The following result is proved in [10], with inspiration from [60].

Theorem 4.4 ([10]). The differential forms WL
g,n(t1, . . . , tn) satisfy the Eynard-Orantin

topological recursion with respect to the same spectral curve (3.13) and the recursion kernel
(4.9), starting with exactly the same first two stable cases

(4.22) WL
1,1(t1) = − 1

128

(t21 − 1)3

t41
dt1,

and

(4.23) WL
0,3(t1, t2, t3) = − 1

16

(
1− 1

t21 t
2
2 t

2
3

)
dt1dt2dt3.

Remark 4.5. It is somewhat surprising, because the spectral curve (3.13) has nothing to
do with the lattice point counting problem. As we have mentioned, the (g, n) = (0, 1) and
(0, 2) considerations for this problem do not produce the spectral curve.
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Corollary 4.6. For every (g, n) with 2g − 2 + n > 0, we have the identity

(4.24) WD
g,n(t1, . . . , tn) = WL

g,n(t1, . . . , tn).

The differential form WD
g,n(t1, . . . , tn) is a Laurent polynomial in t21, . . . , t

2
n of degree 2(3g−

3 + n), with a reciprocity property

(4.25) WD
g,n(1/t1, . . . , 1/tn) = (−1)nt21 · · · t2n WD

g,n(t1, . . . , tn).

The numbers of dessins can be expressed in terms of the number of lattice points:

(4.26) Dg,n(µ1, . . . , µn) =
∑
`1>

µ1
2

· · ·
∑

`n>
µn
2

n∏
i=1

2`i − µi
µi

(
µi
`i

)
Ng,n(2`1 − µi, · · · , 2`n − µn).

Remark 4.7. The relation (4.26) appears in [62, Section 2.1] for an abstract setting.

Proof. The Eynard-Orantin topological recursion uniquely determines the differential forms
for all (g, n). Since WD

1,1(t) = WL
1,1(t) and WD

0,3(t1, t2, t3) = WL
0,3(t1, t2, t3), we conclude that

WD
g,n(t1, . . . , tn) = WL

g,n(t1, . . . , tn) for 2g − 2 + n > 0.

By induction on 2g − 2 + n we can show that WD
g,n(t1, . . . , tn) is a Laurent polynomial

in t21, . . . , t
2
n. The statement is true for the initial cases (4.10) and (4.11). The integral

transformation formula (4.14) is a residue calculation at t = 0 and t =∞. By the induction
hypothesis, the right-hand side of (4.14) becomes

− 1

64

1

2πi

∫
γ

(
1

t+ t1
+

1

t− t1

)
(t2 − 1)3

t2
· 1

dt
· dt1

×

[
n∑
j=2

(
WD

0,2(t, tj)Wg,n−1(−t, t2, . . . , t̂j , . . . , tn) +WD
0,2(−t, tj)Wg,n−1(t, t2, . . . , t̂j , . . . , tn)

)

+WD
g−1,n+1(t,−t, t2, . . . , tn) +

stable∑
g1+g2=g

ItJ={2,3,...,n}

WD
g1,|I|+1(t, tI)W

D
g2,|J |+1(−t, tJ)

]

=
1

32

1

2πi

∫
γ

(t2 − 1)3

t2 − t21
1

t
· 1

dt
· dt1

[
n∑
j=2

2(t2 + t2j )

(t2 − t2j )2
Wg,n−1(t, t2, . . . , t̂j , . . . , tn) dt · dtj

+WD
g−1,n+1(t, t, t2, . . . , tn) +

stable∑
g1+g2=g

ItJ={2,3,...,n}

WD
g1,|I|+1(t, tI)W

D
g2,|J |+1(t, tJ)

]
.

Clearly the residues at t = 0 and t =∞ are Laurent polynomials in t21, . . . , t
2
n.

Because of (4.24), we have
(4.27)∑

µ∈Zn+

Dg,n(µ)

n∏
i=1

d

(
1

xµii

)
=
∑
ν∈Zn+

Ng,n(ν)
n∏
i=1

d

(
1

zνii

)
= (−1)n

∑
ν∈Zn+

Ng,n(ν)
n∏
i=1

dzνii ,

where xi = zi + 1/zi. The Galois conjugation t→− t corresponds to z→1/z. Since

WN
g,n(t1, . . . , tn) = (−1)nWN

g,n(−t1, . . . ,−tn),

the second equality of (4.27) follows. Take the residue of the left-hand side of (4.27) at
xi = ∞ for i = 1, . . . , n. On the right-hand side we take the residue at zi = 0 for every i.
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Then for every (µ1, . . . , µn) ∈ Zn+ we have
(4.28)

Dg,n(µ1, . . . , µn)µ1 · · ·µn =

(
1

2πi

)n ∫
|z1|=ε

· · ·
∫
|zn|=ε

xµ1
1 · · ·x

µn
n

∑
ν∈Zn+

Ng,n(ν)

n∏
i=1

dzνii .

Since (
zi +

1

zi

)µi
=

µi∑
`i=0

(
µi
`i

)
zµi−2`i
i ,

the residue of (4.28) comes from the term µi − 2`i + νi = 0, and we have

Dg,n(µ1, . . . , µn)µ1 · · ·µn

=
∑

`1>µ1/2

· · ·
∑

`n>µn/2

n∏
i=1

(2`i − µi)
(
µi
`i

)
Ng,n(2`1 − µ1, . . . , 2`n − µn).

The reciprocity relation, and the degree of the Laurent polynomial, is the consequence
of the following, which was established in [55].

Theorem 4.8 ([55]). The functions FLg,n(t1, . . . , tn) of (4.20) for the stable range 2g−2+n >
0 are uniquely determined by the following differential recursion formula from the initial
values FL0,3(t1, t2, t3) and FL1,1(t1).

(4.29) FLg,n(t1, . . . , tn)

= − 1

16

∫ t1

−1

[
n∑
j=2

tj
t2 − t2j

(
(t2 − 1)3

t2
∂

∂t
Fg,n−1L(t, t[n]\{1,j})−

(t2j − 1)3

t2j

∂

∂tj
FLg,n−1(t[n]\{1})

)

+

n∑
j=2

(t2 − 1)2

t2
∂

∂t
FLg,n−1(t, t[n]\{1,j})

+
1

2

(t2 − 1)3

t2
∂2

∂u1∂u2

(
FLg−1,n+1(u1, u2, t[n]\{1})

+

stable∑
g1+g2=g

ItJ=[n]\{1}

FLg1,|I|+1(u1, tI)Fg2,|J |+1(u2, tJ)

)∣∣∣∣∣
u1=u2=t

]
dt.

Here [n] = {1, 2, . . . , n} is an index set, and the last sum is taken over all partitions g1+g2 =
g and set partitions I t J = [n] \ {1} subject to the stability conditions 2g1− 1 + |I| > 0 and
2g2 − 1 + |J | > 0. The initial values are given by

(4.30) FL1,1(t1) = − 1

384

(t+ 1)4

t2

(
t− 4 +

1

t

)
and

(4.31) FL0,3(t1, t2, t3) = − 1

16
(t1 + 1)(t2 + 1)(t3 + 1)

(
1 +

1

t1 t2 t3

)
.

In the stable range FLg,n(t1, . . . , tn) is a Laurent polynomial of degree 3(2n − 2 + n) and
satisfies the reciprocity relation

(4.32) FLg,n(1/t1, . . . , 1/tn) = FLg,n(t1, . . . , tn).
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The leading terms of FLg,n(t1, . . . , tn) form a homogeneous polynomial of degree 3(2g−2+n),
and is given by

(4.33) FKg,n(t1, . . . , tn)
def
=

(−1)n

22g−2+n

∑
d1+···+dn
=3g−3+n

〈τd1 · · · τdn〉g,n
n∏
j=1

(2dj − 1)!!

(
tj
2

)2dj+1

,

where

〈τd1 · · · τdn〉g,n =

∫
Mg,n

ψd1
1 · · ·ψ

dn
n

is the ψ-class intersection number (see Section 6 for more detail about intersection numbers).
The special value at ti = 1 gives

(4.34) FLg,n(1, 1, . . . , 1) = (−1)nχ(Mg,n).

This completes the proof of Corollary 4.6. �

5. The ψ-class interaction numbers on Mg,n

The crucial discovery of Konstevich [46] is the equality between the intersection numbers
on the compact moduli space Mg,n and the Euclidean volume of the moduli space Mg,n

of smooth curves using the isomorphism (4.15). The Feynman diagram expansion of the
Kontsevich matrix integral relates the Euclidean volume with a τ -function of the KdV
equations. The Eyanrd-Orantin recursion for the ψ-class intersection numbers is precisely
the Dijkgraaf-Verlinde-Verlinde formula [15] of the intersection numbers. In this section we
identify the spectral curve and the recursion kernel for the ψ-class intersection numbers.

As we have noted, the derivative of the recursion formula (4.29) is not the Eynard-Orantin
recursion because the spectral curve is not defined by the unstable geometries. Indeed, we
have dFL0,1 ≡ 0. However, when we associate the number of lattice points with the ψ-class

intersection numbers on Mg,n, the unstable geometries do make sense.
Let us recall a computation in [55, Section 4].

(5.1)
∑
µ∈Zn+

Ng,n(µ)e−〈µ,w〉 =
∑

Γ ribbon graph
of type (g,n)

∑
µ∈Zn+

1

|Aut(Γ)|
∣∣{x ∈ Ze(Γ)

+ | AΓx = µ}
∣∣e−〈µ,w〉

=
∑

Γ ribbon graph
of type (g,n)

1

|Aut(Γ)|
∑

x∈Ze(Γ)
+

e−〈AΓx,w〉

=
∑

Γ ribbon graph
of type (g,n)

1

|Aut(Γ)|
∏
η edge
of Γ

∞∑
`η=1

e−〈aη ,w〉`η

=
∑

Γ ribbon graph
of type (g,n)

1

|Aut(Γ)|
∏
η edge
of Γ

e−〈aη ,w〉

1− e−〈aη ,w〉
,

where AΓ is the incidence matrix of (4.16), aη is the η-th column of AΓ, and 〈µ,w〉 =
µ1w1 + · · ·+µnwn. By comparing (4.20) and (5.1), we see that we are substituting ewi = zi
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in this computation. Therefore, we obtain

(5.2) FLg,n(t1, . . . , tn) =
∑

Γ ribbon graph
of type (g,n)

1

|Aut(Γ)|
∏
η edge
of Γ

1∏n
i=1 z

aiη
i − 1

.

Thus the series (4.20) in zi converges for |zi| > 1. Since zi = ti+1
t1−1 , the ti→∞ limit picks

up the limit of (4.20) as zi→1, and hence the information of Ng,n(µ) as µi→∞. Since the
orbifold isomorphism (4.15) is scale invariant under the action of R+, making the perimeter
length µ large is the same as making the mesh small in the lattice point counting. Hence at
the limit we obtain the Euclidean volume ofMg,n considered by Kontsevich in [46]. This is
why we expect that (4.33) holds. Let us now consider the limit of the spectral curve (3.13)
as t→∞. First we have

x = z +
1

z
= 2 +

4

t2 − 1

y = −z = −1− 2

t− 1
.

Ignoring the constant shifts of x and y, we obtain for a large t

(5.3)

{
x = 4

t2

y = −2
t .

Hence the spectral curve is given by the equation x = y2. We use t as the preferred
coordinate.

We now compare the Eynard-Orantin recursion with respect to this spectral curve and
the Witten-Kontsevich theory. We use (4.33) and define

(5.4)

WK
g,n(t1, . . . , tn) = d1 · · · dnFKg,n(t1, . . . , tn)

=
(−1)n

22g−2+n

∑
d1+···+dn
=3g−3+n

〈τd1 · · · τdn〉g,n
n∏
j=1

(2dj + 1)!!

(
tj
2

)2dj

d

(
tj
2

)

=
(−1)n

162g−2+n
wKg,n(t1, . . . , tn) dt1 · · · dtn,

where wKg,n(t1, . . . , tn) is the coefficient of the Eynard-Orantin differential form normalized

by the constant factor (−1)n

162g−2+n . Note that wKg,n(t1, . . . , tn) is a polynomial in t2i ’s with
positive rational coefficients for (g, n) in the stable range. For (g, n) = (0, 1) and (0, 2), we
have

〈τk〉0,1 = δk+2,0(5.5)

〈τk1τk2〉0,2 = (−1)k1 , k1 + k2 = −1.(5.6)

Therefore,

(5.7) WK
0,1(t) =

−1

16−1
〈τ−2〉(−3)!! t−4dt =

16

t4
dt = ydx,

in agreement with the spectral curve x = y2 (5.3). Similarly, we have

(5.8) FK0,2(t1, t2) =
∞∑
d=0

(−1)d(2d− 1)!!(−2d− 3)!!

(
t1
2

)2d+1( t2
2

)−2d−1
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= −
∞∑
d=0

1

2d+ 1

(
t1
t2

)2d+1

= log

(
1− t1

t2

)
− 1

2
log

(
1− t21

t22

)
,

and hence

(5.9) WK
0,2(t1, t2) =

dt1 · dt2
(t1 − t2)2

− 1

2

dx1 · dx2

(x1 − x2)2
.

As a consequence, the recursion kernel is given by

(5.10) KK(t, t1) = −1

2

(
1

t+ t1
+

1

t− t1

)
t4

32

1

dt
dt1,

since dx1·dx2
(x1−x2)2 does not contribute to the kernel. The Eynard-Orantin recursion for the

Euclidean volume then becomes

(5.11) WK
g,n(t1, . . . , tn)

= − 1

2πi

∫
γ∞

(
1

t+ t1
+

1

t− t1

)
t4

64

1

dt
dt1

[
WK
g−1,n+1(t,−t, t2, . . . , tn)

+

n∑
j=2

(
dt · dtj

(t− tj)2
WK
g,n−1(−t, t2, . . . , t̂j , . . . , tn)

− dt · dtj
(t+ tj)2

WK
g,n−1(t, t2, . . . , t̂j , . . . , tn)

)

+

stable∑
g1+g2=g

ItJ={2,...,n}

WK
g1,|I|+1(t, tI)W

K
g2,|J |+1(−t, tJ)

]
,

where the integral is taken with respect to a large negatively oriented circle γ∞ that encloses
any of ±t1, . . . ,±tn. This is the larger circle of Figure 4.1. Here again dx1·dx2

(x1−x2)2 does not

contribute in the formula. Since the coefficients wKg,n(t1, . . . , tn) in the stable range are
polynomials, the poles of the integrand of (5.11) in the integration coutour are at t = ±ti’s.
Therefore, we can perform the integral in terms of the residue calculus at poles t = ±ti.
First let us get rid of the factor 1/162g−2+n from (5.11). Since the recursion is an induction
on 2g−2+n, we have an overall factor 16 adjustment on the right-hand side. The integration
contour is negatively oriented, so the residue calculation at t = ±ti receives universally the
negative sign. This sign is exactly cancelled by the choice of the sign of wKg,n in (5.4). Thus
the result of residue evaluation of (5.11) is

(5.12) wKg,n(t1, . . . , tn) =
1

2
t41w

K
g−1,n+1(t1, t1, t2, . . . , tn)

+
1

2
t41

stable∑
g1+g2=g

ItJ={2,...,n}

wKg1,|I|+1(t1, tI)w
K
g2,|J |+1(t1, tJ)

+ t41

n∑
j=2

t21 + t2j
(t21 − t2j )2

wKg,n−1(t1, . . . , t̂j , . . . , tn)
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+
1

2

n∑
j=2

(
∂

∂t

∣∣∣∣
t=tj

+
∂

∂t

∣∣∣∣
t=−tj

)(
1

t2 − t21
t5wKg,n−1(t, t2, . . . , t̂j , . . . , tn)

)

=
1

2
t41

wKg−1,n+1(t1, t1, t2, . . . , tn) +
stable∑

g1+g2=g
ItJ={2,...,n}

wKg1,|I|+1(t1, tI)w
K
g2,|J |+1(t1, tJ)


+

n∑
j=2

∂

∂tj

[
tj

t21 − t2j

(
t41w

K
g,n−1(t[n]\{j})− t4jwKg,n−1(t[n]\{1})

)]
.

This is the same as [10, Theorem 5.2].
Let us adopt the normalized notation

(5.13) 〈σd1 · · ·σdn〉g,n = 〈τd1 · · · τdn〉g,n
n∏
i=1

(2di + 1)!!

to make the formula shorter. Then

(5.14) wKg,n(t1, . . . , tn) =
∑

d1,...,dn

〈σd1 · · ·σdn〉g,n
n∏
j=1

t
2dj
j .

The DVV formula [15] for the Virasoro constraint condition on the ψ-class intersection
numbers on Mg,n reads

(5.15) 〈σk
n∏
i=2

σdi〉g,n =
1

2

∑
a+b=k−2

〈σaσb
n∏
i=2

σdi〉g−1,n+1

+
1

2

∑
a+b=k−2

stable∑
g1+g2=g

ItJ={2,...,n}

〈σa
∏
i∈I

σdi〉g1,|I|+1 · 〈σb
∏
j∈J

σdj 〉g2,|J |+1

+
n∑
j=2

(2dj + 1)〈σk+dj−1

∏
i 6=1,j

σdi〉g,n−1.

We thus recover the discovery of [25]:

Theorem 5.1. The Eynard-Orantin recursion formula for the spectral curve x = y2 is the
Dijkgraaf-Verlinde-Verlinde formula [15] for the intersection numbers 〈τd1 · · · τdn〉g,n on the

moduli space Mg,n of pointed stable curves.

Proof. We extract the coefficient of

(5.16) t2k1

n∏
j=2

t
2dj
j

in (5.12) and compare the result with (5.15). It is obvious that the fifth line of (5.12)
produces the first and second lines of (5.15).

To compare the last lines of (5.12) and (5.15), we consider the case |tj | < |t1| for all j ≥ 2
in (5.12). We then have the expansion

1

t21 − t2j
=

1

t21

1

1− t2j
t21

=
1

t21

∞∑
m=0

(
t2j
t21

)m
.
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The (5.16)-term of the last line of (5.12) has two contributions. The first one comes from

∂

∂tj

(
t21tj

∞∑
m=0

(
t2j
t21

)m
wKg,n−1(t1, t2, . . . , t̂j , . . . , tn)

)
.

Since wKg,n−1(t1, t2, . . . , t̂j , . . . , tn) does not contain tj , we set m = dj to produce the right

power 2dj of tj . The power of t1 has to be 2k. Thus from wKg,n−1 we take the term of

t
2k+2dj−2
1 , whose coefficient is 〈σk+dj−1

∏
i 6=1,j σdi〉. The total contribution from the first

kind comes from the differentiation, which gives 2m+ 1 = 2dj + 1.
The second possible contribution for the (5.16)-term may come from

− ∂

∂tj

(
t5j
t21

∞∑
m=0

(
t2j
t21

)m
wKg,n−1(t2, . . . , tn)

)
.

However, this term does not produce t2k1 , and hence does not contribute to the (5.16)-term.
This completes the proof of Theorem 5.1. �

6. Single Hurwitz numbers

What is the mirror dual of the number of trees? The answer we wish to present in this
section is that it is the Lambert curve. This analytic curve serves as the spectral curve for the
Hurwitz counting problem, and comes up from the the unstable geometries (g, n) = (0, 1)
and (0, 2) via Laplace transform.

A Hurwitz cover is a holomorphic mapping f : C → P1 from a connected nonsingu-
lar projective algebraic curve C of genus g to the projective line P1 with only simple
ramifications except for ∞ ∈ P1. Such a cover is further refined by specifying its pro-
file, which is a partition µ = (µ1 ≥ µ2 ≥ · · · ≥ µn > 0) of the degree of the covering
d = |µ| = µ1 + · · ·+µn. The length `(µ) = n of this partition is the number of points in the
inverse image f−1(∞) = {p1, . . . , pn} of ∞. Each part µi gives a local description of the
map f , which is given by u 7−→ u−µi in terms of a local coordinate u of C around pi. The
number hg,µ of the topological types of Hurwitz covers of a given genus g and a profile µ,
counted with the weight factor 1/|Autf |, is the single Hurwitz number we shall deal with
in this section.

The deformations of a Hurwitz cover f are obtained by moving the branch points (i.e.,
the image of the ramification points) on P1 \{∞}. Thus hg,µ counts the number of Hurwitz
covers with prescribed (i.e., fixed) and labeled branch points. On the other hand, the
preimages of ∞ on C are labeled only by the parts of µ. Therefore, a more natural count
of Hurwitz cover is

(6.1) Hg(µ) =
|Aut(µ)|

(2g − 2 + n+ |µ|)!
· hg,µ.

Here,

(6.2) r = r(g, µ)
def
= 2g − 2 + n+ |µ|

is the number of simple ramification points of f by the Riemann-Hurwitz formula, and
Aut(µ) is the group of permutations of equal parts of the partition µ.

One reason that explains why single Hurwitz numbers are interesting is a remarkable
formula due to Ekedahl, Lando, Shapiro and Vainshtein [20, 33, 48, 65] that relates Hurwitz
numbers and Gromov-Witten invariants. For genus g ≥ 0 and a partition µ of length
`(µ) = n subject to the stability condition 2g − 2 + n > 0, the ELSV formula states that
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(6.3) Hg(µ) =
n∏
i=1

µµii
µi!

∫
Mg,n

Λ∨g (1)∏n
i=1

(
1− µiψi

)
=

g∑
j=0

(−1)j
∑

k1,...,kn≥0

〈τk1 · · · τkncj(E)〉
n∏
i=1

µµi+kii

µi!
,

whereMg,n is the Deligne-Mumford moduli stack of stable algebraic curves of genus g with
n distinct smooth marked points, Λ∨g (1) = 1−c1(E)+· · ·+(−1)gcg(E) is the alternating sum

of the Chern classes of the Hodge bundle E on Mg,n, ψi is the i-th tautological cotangent
class, and

(6.4) 〈τk1 · · · τkncj(E)〉 =

∫
Mg,n

ψk1
1 · · ·ψ

kn
` cj(E)

is the linear Hodge integral, which is 0 unless k1 + · · ·+ kn + j = 3g − 3 + n.
The Deligne-Mumford stackMg,n is defined as the moduli space of stable curves satisfying

the stability condition 2 − 2g − n < 0. However, single Hurwitz numbers are well defined
for unstable geometries (g, n) = (0, 1) and (0, 2), and their values are

(6.5) H0((d)) =
dd−3

(d− 1)!
=
dd−2

d!
and H0((µ1, µ2)) =

1

µ1 + µ2
· µ

µ1
1

µ1!
· µ

µ2
2

µ2!
.

The ELSV formula remains valid for unstable cases by defining∫
M0,1

Λ∨0 (1)

1− dψ
=

1

d2
,(6.6) ∫

M0,2

Λ∨0 (1)

(1− µ1ψ1)(1− µ2ψ2)
=

1

µ1 + µ2
.(6.7)

Let us examine the (g, n) = (0, 1) case. We wish to count the number of Hurwitz covers
f : P1−→P1 of degree d with profile µ = (d). If d = 2, then f(u) = u2 is the only map,
since r = 1 and the two ramification points can be placed at u = 0 and u = ∞. The
automorphism of this map is Z/2Z. We now consider the case when d ≥ 3. First we label
all branch points. One is ∞, so let us place all others, the images of simple ramification
points, at the r-th roots of unity. Here r = d − 1. We label these points with indices
[r] = {1, 2, . . . , r}. Connect each r-th root of unity with the origin by a straight line (see
Figure 6.1). Let ∗ denote this star-like shape, which has one vertex at the center and r
half-edges. Then the inverse image f−1(∗) is a tree-like shape with d vertices and rd half-
edges. Here we call each inverse image of 0 a vertex of f−1(∗). If f is simply ramified at p,
then two half-edges are connected at p and form a real edge that is incident to two vertices.
Since f(p) is one of the r-th root of unity, we give the same label to p. Thus all simple
ramification points are labeled with the index set [r]. Now we remove all half-edges from
f−1(∗) that are not made into an edge, and denote it by T . It is a tree on P1 that has d
vertices and r = d− 1 edges. Note that except for the case d = 2, the edge labeling gives a
labeling of vertices. For example, if a vertex x is incident to edges i1 < i2 < · · · < ik, then
x is labeled by i1i2 · · · ik.

Conversely, suppose we are given a tree with d labeled vertices by the index set [d] =
{1, 2, . . . , d} and r = d−1 edges. At each vertex we can give a cyclic order to incident edges
by aligning them in the increasing order of the labels of the other ends of the edges. Thus
the tree becomes a ribbon graph (see Section 3), and hence it can be placed on P1. Then
by choosing the midpoint of each edge as a simple ramification point and each vertex as a
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f

Figure 6.1. Counting the genus 0 single Hurwitz numbers with the total ramifi-
cation at ∞.

zero of f , we can construct a Hurwitz cover. Recall that the number of trees with d labeled
vertices is dd−2. Therefore,

H0((d)) =
dd−2

d!

is the number of trees with d unlabeled vertices.
Fix an n ≥ 1, and consider a partition µ of length n as an n-dimensional vector

µ = (µ1, . . . , µn) ∈ Zn+
consisting of positive integers. The Laplace transform of Hg(µ) as a function in µ,

(6.8) Hg,n(w1, . . . , wn) =
∑
µ∈Zn+

Hg(µ)e−(µ1(w1+1)+···+µn(wn+1)),

is the function we wish to compute. Note that the automorphism group Aut(µ) acts trivially

on the function e−(µ1(w1+1)+···+µn(wn+1)), which explains its appearance in (6.1). The reason
for shifting the variables wi 7−→ wi + 1 is due to the asymptotic behavior

µµ+k

µ!
e−µ ∼ 1√

2π
µk−

1
2

as µ approaches to ∞. This asymptotics also suggests that the holomorphic function
Hg,n(w1, . . . , wn) is actually defined on a double-sheeted overing on the wi-plane, since√
wi behaves better as a holomorphic coordinate.

Following [24, 57], we introduce a series of polynomials ξ̂n(t) of degree 2n + 1 in t for
n ≥ 0 by the recursion formula

(6.9) ξ̂n(t) = t2(t− 1)
d

dt
ξ̂n−1(t)

with the initial condition ξ̂0(t) = t − 1. This differential operator appears in [31]. The

functions ξ̂−1(t) and ξ̂0(t) also appear as the two fundamental functions in [84] that generate
his algebra A. These polynomials are introduced to make the computation of the Laplace
transform (6.8) easier.
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Proposition 6.1 ([12, 24]). Let us introduce new coordinates

(6.10) x = e−w, z =
∞∑
µ=1

µµ−1

µ!
e−µ xµ, t− 1 =

∞∑
µ=1

µµ

µ!
e−µ xµ.

Then the inverse function of z = z(x) is given by

(6.11) x = ze1−z,

and the variables z and t are related by

(6.12) z =
t− 1

t
.

Moreover, we have

(6.13) ξ̂n(t) =

∞∑
µ=1

µµ+n

µ!
e−µ(w+1) =

∞∑
µ=1

µµ+n

µ!
e−µ xµ

for n ≥ 0.

Proof. The infinite series (6.13) has the radius of convergence 1, and for |x| < 1, we can
apply the Lagrange inversion formula to obtain (6.11). Since the application of

− d

dw
= x

d

dx
= t2(t− 1)

d

dt

n-times to
∑∞

µ=1
µµ

µ! e
−µ(w+1) produces

∑∞
µ=1

µµ+n

µ! e−µ(w+1), we obtain (6.9). If we extend

(6.13) formally to n = −1, then we have z = ξ̂−1(t). To obtain the expression of z as a
function of t, we need to solve the differential equation

t2(t− 1)
d

dt
· z = t− 1.

Its solution is z = c− 1
t . Since x = 0⇐⇒ z = 0 and x = 0 =⇒ t = 1, we conclude that the

constant of integration is c = 1. Thus z = 1− 1/t. �

Remark 6.2. The relation between our z as a function in x and the classical Lambert
W-function (see for example, [12]) is

z(x) = −W (−x/e).

Because of the ELSV formula (6.1), the Laplace transform of Hg(µ) becomes a polynomial
in ti, . . . , tn for (g, n) in the stable range. The result is

(6.14) FHg,n(t1, . . . , tn) = Hg,n(w(t1), . . . , w(tn))

=
∑
µ∈Zn+

Hg(µ)e−(µ1(w1+1)+···+µn(wn+1))

=
∑
µ∈Zn+

∑
k1+···+kn≤3g−3+n

〈τk1 · · · τknΛ∨g (1)〉
n∏
i=1

µµi+kii

µi!
e−(µ1(w1+1)+···+µn(wn+1))

=
∑

k1+···+kn≤3g−3+n

〈τk1 · · · τknΛ∨g (1)〉
n∏
i=1

ξ̂ki(ti).

The Laplace transform (6.14) is no longer a polynomial for the unstable geometries (g, n) =
(0, 1) and (0, 2). Wel use (6.5) to calculate FH0,1 and FH0,2.
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Theorem 6.3. The Laplace transform of the unstable cases (g, n) = (0, 1) and (0, 2) are
given by

(6.15) FH0,1(t) =
1

2

(
1− 1

t2

)
and

(6.16) FH0,2(t1, t2) = log

(
z1 − z2

x1 − x2

)
− (z1 + z2) + 1,

where ti, xi, zi are related by (6.11) and (6.12).

Proof. The (0, 1) case is a straightforward computation.

FH0,1(t) =
∞∑
k=d

H0((d)) e−dxd =
∞∑
d=1

dd−2

d!
e−dxd = ξ̂−2(t).

This is a solution to the differential equation

t2(t− 1)
d

dt
ξ̂−2(t) = ξ̂−1(t) = z =

t− 1

t
.

Therefore, ξ̂−2(t) = c− 1
2

1
t2

for a constant of integration c. Here again we note

t = 1 =⇒ z = 0 =⇒ x = 0 =⇒ ξ̂−2(t) = 0.

This determines that c = 1
2 . Thus we have established (6.15).

Since

FH0,2(t1, t2) =
∑

µ1,µ2≥1

1

µ1 + µ2
· µ

µ1
1

µ1!
e−µ1 · µ

µ2
2

µ2!
e−µ2 · xµ1

1 xµ2
2

and since z = ξ̂−1(t), (6.16) is equivalent to

(6.17)
∑

µ1,µ2≥0
(µ1,µ2)6=(0,0)

1

µ1 + µ2
· µ

µ1
1

µ1!
e−µ1 · µ

µ2
2

µ2!
e−µ2 ·xµ1

1 xµ2
2 = log

(
e
∞∑
k=1

kk−1

k!
e−k · x

k
1 − xk2
x1 − x2

)
,

where |x1| < 1, |x2| < 1, and 0 < |x1 − x2| < 1 so that the formula is an equation of
holomorphic functions in x1 and x2. Define

φ(x1, x2)

def
=

∑
µ1,µ2≥0

(µ1,µ2) 6=(0,0)

1

µ1 + µ2
· µ

µ1
1

µ1!
e−µ1 · µ

µ2
2

µ2!
e−µ2 · xµ1

1 xµ2
2 − log

( ∞∑
k=1

kk−1

k!
e1−k · x

k
1 − xk2
x1 − x2

)
.

Then

φ(x, 0) =
∑
µ1≥1

µµ1−1
1

µ1!
e−µ1xµ1 − log

( ∞∑
k=1

kk−1

k!
e−k · xk−1

)
− 1

= ξ̂−1(t)− log

(
ξ̂−1(t)

x

)
− 1 = 1− 1

t
− log

(
1− 1

t

)
+ log x− 1

= −1

t
− log

(
1− 1

t

)
− w = 0
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because

x = e−w = ze1−z =

(
1− 1

t

)
e

1
t .

Here t is restricted on the domain Re(t) > 1. Since

x1
∂

∂x1
log

(
e

∞∑
k=1

kk−1

k!
e−k · x

k
1 − xk2
x1 − x2

)

= t21(t1 − 1)
∂

∂t1
log
(
ξ̂−1(t1)− ξ̂−1(t2)

)
− x1

∂

∂x1
log(x1 − x2)

= t21(t1 − 1)
∂

∂t1
log

(
− 1

t1
+

1

t2

)
− x1

x1 − x2

=
t1t2(t1 − 1)

t1 − t2
− x1

x1 − x2
,

we have(
x1

∂

∂x1
+ x2

∂

∂x2

)
log

(
e
∞∑
k=1

kk−1

k!
e−k · x

k
1 − xk2
x1 − x2

)

=
t1t2(t1 − 1)− t1t2(t2 − 1)

t1 − t2
− x1 − x2

x1 − x2

= t1t2 − 1 = ξ̂0(t1)ξ̂0(t2) + ξ̂0(t1) + ξ̂0(t2).

On the other hand, we also have(
x1

∂

∂x1
+ x2

∂

∂x2

) ∑
µ1,µ2≥0

(µ1,µ2) 6=(0,0)

1

µ1 + µ2
· µ

µ1
1

µ1!
e−µ1 · µ

µ2
2

µ2!
e−µ2 · xµ1

1 xµ2
2

=
∑

µ1,µ2≥0
(µ1,µ2) 6=(0,0)

µ1 + µ2

µ1 + µ2
· µ

µ1
1

µ1!
e−µ1 · µ

µ2
2

µ2!
e−µ2 · xµ1

1 xµ2
2

= ξ̂0(t1)ξ̂0(t2) + ξ̂0(t1) + ξ̂0(t2).

Therefore,

(6.18)

(
x1

∂

∂x1
+ x2

∂

∂x2

)
φ(x1, x2) = 0.

Note that φ(x1, x2) is a holomorphic function in x1 and x2. Therefore, it has a series
expansion in homogeneous polynomials around (0, 0). Since a homogeneous polynomial in
x1 and x2 of degree n is an eigenvector of the differential operator x1

∂
∂x1

+ x2
∂
∂x2

belonging

to the eigenvalue n, the only holomorphic solution to the Euler differential equation (6.18)
is a constant. But since φ(x1, 0) = 0, we conclude that φ(x1, x2) = 0. This completes the
proof of (6.17), and hence the proposition. �

Definition 6.4. We define the symmetric differential forms for all g ≥ 0 and n > 0 by

(6.19) WH
g,n(t1, . . . , tn) = d1 · · · dnFHg,n(t1, . . . , tn),

and call them the Hurwitz differential forms.
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The unstable cases are given by

(6.20) WH
0,1(t1) = d1F

H
0,1(t1) =

1

t31
dt1 =

z

x
dx,

and

(6.21) WH
0,2(t1, t2) = d1d2F

H
0,2(t1, t2) = d1d2 [log (z1 − z2)− log(x1 − x2)]

= d1d2

[
log

(
1

t2
− 1

t1

)
− log(x1 − x2)

]
= d1d2 [log (t1 − t2)− log(x1 − x2)]

=
dt1 · dt2

(t1 − t2)2
− dx1 · dx2

(x1 − x2)2
.

We note that all quantities are expressible in terms of z, or equivalently, in t. Now Defini-
tion 2.1 tells us that the spectral curve Σ of the single Hurwitz number is

(6.22)

{
x = ze1−z

y = z
x = ez−1.

The Lambert curve Σ defined by x = ze1−z, which is obtained by the Laplace transform
of the number of trees, is an analytic curve and its x-projection has a simple ramification
point at z = 1, since

dx = (1− z)e1−z dz.

The t-coordinate brings this ramification point to t =∞. Let z̄ (resp. t̄) denote the unique
local Galois conjugate of z (reps. t). We also use

(6.23) t̄ = s(t),

which is defined by the functional equation

(6.24)

(
1− 1

t

)
e

1
t =

(
1− 1

s(t)

)
e

1
s(t) .

Although the Galois conjugate is only locally defined near the branched point t = ∞, we
consider s(t) as a global holomorphic function via analytic continuation. For Re(t) > 1,
(6.24) implies

w(t) = − log x = −

(
1

t
−
∞∑
n=1

1

n

1

tn

)
=
∞∑
n=2

1

tn
.

When considered as a functional equation, (6.24) has exactly two solutions: t and

(6.25) s(t) = −t+
2

3
+

4

135
t−2 +

8

405
t−3 +

8

567
t−4 + · · · .

This is the deck-transformation of the projection π : Σ → C near t = ∞ and satisfies the
involution equation s

(
s(t)

)
= t. It is analytic on C \ [0, 1] and has logarithmic singularities

at 0 and 1.
Let us calculate the recursion kernel. Since

dx

x
=

1− z
z

dz =
dt

t2(t− 1)
=

s′(t)dt

s(t)2(s(t)− 1)
,

we have

(6.26) KH(t, t1) =
1

2

∫ s(t)
t WH

0,2(·, t1)

W0,1(s(t))−W0,1(t)
=

1

2

(
1

t− t1
− 1

s(t)− t1

)
t2(t− 1)
1
t −

1
s(t)

· 1

dt
· dt1
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=
1

2

(
1

t− t1
− 1

s(t)− t1

)
ts(t)

s(t)− t
· t

2(t− 1)

dt
· dt1.

Theorem 6.5 ([24, 57]). The Hurwitz differential forms (6.19) for 2g − 2 + n > 0 satisfy
the Eynard-Orantin recursion:

(6.27) WH
g,n(t1, . . . , tn) =

1

2πi

∮
γ∞

KH(t, t1)

[
WH
g−1,n+1(t, s(t), t2, . . . , tn)

+

No (0, 1)-terms∑
g1+g2=g

ItJ={2,...,n}

WH
g1,|I|+1(t, tI)W

H
g2,|J |+1(s(t), tJ)

]
,

where γ∞ is a negatively oriented circle around ∞ whose radius is larger than any of |tj |’s
and |s(tj)|’s.

Remark 6.6. The recursion formula (6.27) was first conjectured by Bouchard and Mariño
in [7]. Its proofs appear in [4, 24, 57]. The method of [4] is to use a matrix integral
expression of the single Hurwitz numbers. The idea of [24, 57] is that the Laplace transform
of the cut-and-join equation of [29, 77] is the Eynard-Orantin recursion. The cut-and-join
equation takes the following form:

(6.28) r(g, µ)Hg(µ) =
∑
i<j

(µi + µj)Hg

(
µ(̂i, ĵ), µi + µj

)

+
1

2

n∑
i=1

∑
α+β=µi

αβ

Hg−1

(
µ(̂i), α, β

)
+

∑
g1+g2=g

ν1tν2=µ(̂i)

Hg1(ν1, α)Hg2(ν2, β)

 .

Here µ is a partition of length n, and µ(̂i) and µ(̂i, ĵ) indicate the partition obtained by
deleting parts of µ.

Remark 6.7. As we have seen above, Hurwitz numbers in (6.5) determine the shape of the
recursion formula (6.27). Since the recursion gives the Hurwitz numbers for all (g, n), we
have thus established that unstable (g, n) = (0, 1) and (0, 2) Hurwitz numbers determine
all other single Hurwitz numbers.

It is important to check if the formulas (2.4) and (2.6) agree with the geometry. From
the definition (6.14) we calculate

FH0,3(t1, t2, t3) = 〈τ0τ0τ0〉0,3ξ̂0(t1)ξ̂0(t2)ξ̂0(t3) = (t1 − 1)(t2 − 1)(t3 − 1),

which yields

(6.29) WH
0,3(t1, t2, t3) = dt1dt2dt3.

Since

dx(z) · dy(z) = (1− z)dz · dz =
dt · dt
t5

from (6.22) and (6.11), the general formula (2.6) yields

WH
0,3(t1, t2, t3) = − 1

2πi

∮
γ∞

WH
0,2(t, t1)WH

0,2(t, t2)WH
0,2(t, t3)

dx(t) · dy(t)
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= −
[

1

2πi

∮
γ∞

t5

(t− t1)2(t− t2)2(t− t3)2
dt

]
dt1dt2dt3 = dt1dt2dt3,

in agreement with geometry. Here we calculate the residue at t =∞. Although

WH
0,2(t, ti) =

dt · dti
(t− ti)2

− dx · dxi
(x− xi)2

,

the second term does not contribute to the integral. This is because as t→∞, we have x→1,
and dx · dxi/(x− xi)2 has no pole at x = 1.

Similarly,

FH1,1(t1) = 〈τ1〉1,1ξ̂1(t1)− 〈τ0λ1〉1,1ξ̂0(t1) =
1

24
(t21 − 1)(t1 − 1),

and thus we have

(6.30) WH
1,1(t1) =

1

24
(t1 − 1)(3t1 + 1)dt1.

On the other hand, the general formula (2.4) gives

WH
1,1(t1) =

1

2πi

∮
γ∞

KH(t, t1)

[
WH

0,2(u, v) +
dx(u) · dx(v)

(x(u)− x(v))2

]∣∣∣∣ u=t
v=s(t)

=
1

2πi

∮
γ∞

KH(t, t1)
dt · s′(t)dt
(t− s(t))2

=

[
1

2πi

∮
γ∞

1

2

(
1

t− t1
− 1

s(t)− t1

)
ts(t)

s(t)− t
t2(t− 1)

s′(t)dt

(t− s(t))2

]
dt1

=
t1s(t1)

(t1 − s(t1))3
s(t1)2(s(t1)− 1) dt1

−

[
1

2πi

∮
γ[0,1]

1

2

(
1

t− t1
− 1

s(t)− t1

)
ts(t)

s(t)− t
t2(t− 1)

s′(t)dt

(t− s(t))2

]
dt1,

where γ[0,1] is a contour circling around the slit [0, 1] in the t-plane in the positive direction.

-2 -1 1 2

-2

-1

1

2

Figure 6.2. The contours of integration. The outer loop γ∞ is the circle of a large
radius oriented clock wise, and γ[0,1] is the thin loop surrounding the closed interval
[0, 1] in the positive direction.
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Note that the integrand of the last integral is a holomorphic function in t on γ[0,1], hence
it has a finite value. It is also clear that as t1→∞, this integral tends to 0, because γ[0,1] is
a compact space. Therefore, we conclude that

WH
1,1(t1) =

t1s(t1)

(t1 − s(t1))3
s(t1)2(s(t1)− 1) dt1 +O(1/t1)

=

(
1

8
t21 −

1

12
t1 −

1

24

)
dt1 +O(1/t1),

since s(t) = −t+ 2/3 +O(1/t2). It agrees with (6.30) because of the following

Lemma 6.8. A solution to the topological recursion (6.27) is a polynomial in t1.

Proof. The t1-dependence of WH
g,n(t1, . . . , tn) only comes from the factor(

1

t− t1
− 1

s(t)− t1

)
=

1

t
+ +

1

3

1

t2
+

(
t21 −

2

3
t1 +

2

9

)
1

t3
+

(
t21 −

2

3
t1 +

22

135

)
1

t4
+ · · ·

in the recursion kernel (6.26). Since each coefficient of the t-expansion of KH(t, t1) is a
polynomial in t1, Lemma follows. �

7. The stationary Gromov-Witten invariants of P1

In this section we study the generating functions of stationary Gromov-Witten invariants
of P1. The conjectural relation between these invariants and the Eynard-Orantin topological
recursion was first formulated in [62]. We identify the spectral curve and the recursion kernel
using the unstable geometries.

Morally speaking, the space P1 we are considering here appears as the zero section of a
Calabi-Yau threefold known as the resolved conifold X, which is the total space of the rank 2
vector bundle OP1(−1)⊕OP1(−1) over P1. Let L ⊂ X be a special Lagrangian submanifold
[39, 42]. Then the intersection L ∩ P1 of the special Lagrangian and the zero section is a
circle on P1. If we holomorphically embed a bordered Riemann surface with n boundary
components into X in a way that each boundary is mapped to a distinct circle on P1, then
the whole Riemann surface is necessarily mapped to P1. Thus we are considering open
Gromov-Witten invariants of P1. And if we make these circles on P1 small and centered
around n distinct points of P1, then we are naturally led to the stationary Gromov-Witten
invariants of P1.

So our main object of this section is the Laplace transform of the stationary Gromov-
Witten invariants

(7.1) F P1

g,n(x1, . . . , xn) =

∞∑
µ1,...,µn=0

〈τµ1(ω) · · · τµn(ω)〉g,n
n∏
i=1

µi!

n∏
i=1

1

xµi+1
,

where ω ∈ A0(P1) is the point class generator, and

(7.2) 〈τµ1(ω) · · · τµn(ω)〉g,n =

∫
[Mg,n(P1,d)]virt

ψµ1
1 ev∗1(ω) · · ·ψµn1 ev∗n(ω)

is a stationary Gromov-Witten invariant of P1. More precisely, Mg,n(P1, d) is the moduli
stack of stable morphisms from a connected n-pointed curve (C, p1, . . . , pn) into P1 of degree
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d such that f(pi), i = 1, . . . , n, are distinct, and evi is the natural evaluation morphism

evi :Mg,n(P1, d) 3 [f, (C, p1, . . . , pn)] 7−→ f(pi) ∈ P1.

The Gromov-Witten invariant (7.2) vanishes unless

(7.3) 2g − 2 + 2d = µ1 + · · ·+ µn.

The sum in (7.1) is the Laplace transform if we identity

(7.4) x = ew.

The extra numerical factor
∏n
i=1 µi! is included in (7.1) because of the polynomial growth

order of

(7.5) 〈τµ1(ω) · · · τµn(ω)〉g,n
n∏
i=1

µi!

for large µ that is established in [66]. Indeed (7.5) is essentially a special type of Hurwitz
numbers that counts the number of certain coverings of P1.

To determine the spectral curve and the annulus amplitude, we need to consider unstable
geometries (g, n) = (0, 1) and (0, 2). From [66] we learn

(7.6) 〈τµ1(ω)〉0,1 = 〈τ2d−2(ω)〉0,1 =

(
1

d!

)2

.

To compute a closed formula for

F P1

0,1(x) =

∞∑
µ1=0

〈τµ1(ω)〉0,1 µ1!
1

xµ1+1
=

∞∑
d=1

(2d− 2)!

d!d!

1

x2d−1
,

we notice that the generating function of Catalan numbers (3.5)

z(x) =

∞∑
m=0

Cm
1

x2m+1

provides again an effective tool. Thus we have

(7.7)

(
x
d

dx
− 1

)
F P1

0,1(x) = −2
∞∑
d=1

(2d− 2)!

(d− 1)!d!

1

x2d−1

= −2

∞∑
m=0

(2m)!

(m+ 1)!m!

1

x2m+1
= −2z(x).

The advantage of using the Catalan series z(x) is that we know its inverse function (3.8).
Using (4.6), we see that (7.7) is equivalent to

(7.8)

(
z3 + z

z2 − 1

d

dz
− 1

)
Fp1

0,1(z) = −2z.

The solution of (7.8) is given by

Fp1

0,1(z) = −2

z
−
(
z +

1

z

)
log(1 + z2) + c

(
z +

1

z

)
,

with a constant of integration c. Since

z→0 =⇒ x→∞ =⇒ F P1

0,1→0,
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we conclude that c = 2. We thus obtain

(7.9) F P1

0,1(z) = 2z −
(
z +

1

z

)
log(1 + z2),

and therefore,

(7.10) W P1

0,1(z) = dF P1

0,1(z) = − log(1 + z2) d

(
z +

1

z

)
.

Theorem 7.1. The spectral curve for the stationary Gromov-Witten invariants of P1 is
given by

(7.11)

{
x = z + 1

z

y = − log(1 + z2).

Remark 7.2. Since dx = 0 has two zeros at z = ±1, we also use as our preferred coordinate

(7.12) t =
z + 1

z − 1
⇐⇒ z =

t+ 1

t− 1
.

The log singularity on the t-plane is the right semicircle of radius 1 connecting i to −i (see

Figure 7.1). The expression of W P1

0,1 in terms of the preferred coordinate is

(7.13) W P1

0,1(t) =
8t

(t2 − 1)2
log

(
2(t2 + 1)

(t− 1)2

)
dt.

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 7.1. The spectral curve for the stationary Gromov-Witten invariants of P1

is the complex t-plane minus the semicircle.

Remark 7.3. The function x = z + 1
z is expected here, since it is the Landau-Ginzburg

model that is homologically mirror dual to P1 [2].

Remark 7.4. The Galois conjugate of x = z + 1
z is globally defined, and is given by

(7.14) t 7−→ t̄ = −t.

Remark 7.5. Since

(7.15)
1

1− z(x)
=
∞∑
k=0

z(x)k = 1 +
∞∑
n=0

(
n

bn2 c

)
1

xn+1
,
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we can express t in the branch near t = −1 as a function in x. The result is

(7.16) t+ 1 =
z(x) + 1

z(x)− 1
+ 1 = 2− 2

1− z(x)
= −

∞∑
n=0

2

(
n

bn2 c

)
1

xn+1
,

which is also absolutely convergent for |x| > 2.

Remark 7.6. We are using the normalized Gromov-Witten invariants (7.5) to compute
the Laplace transform (7.1). If we did not include the µ! factor in our computation of the
spectral curve, then we would have encountered with the modified Bessel function

I0(2x) =
∞∑
m=1

1

(m!)2
x2m,

instead of z(x), in computing (7.9). We note that I0(2x) appears in [18] in the exact same
context of computing the Gromov-Witten invariants of P1. We prefer the Catalan number
series z(x) over the modified Bessel function mainly because the inverse function of z(x)
takes a simple form x = z + 1

z .

Motivated by the technique developed in [7, 24, 57] for single Hurwitz numbers, let us
define

(7.17) ξn(t) =

∞∑
k=0

(
2k

k

)
kn

1

x2k+1
, n ≥ 0,

and

(7.18) ηn(t) =

∞∑
k=0

(
2k + 1

k

)
kn

1

x2k+2
, n ≥ 0.

We then have

(7.19) ξn+1(t) = −1

2

(
x
d

dx
+ 1

)
ξn(t) =

(
t4 − 1

8t

d

dt
− 1

2

)
ξn(t)

and

(7.20) ηn+1(t) = −1

2

(
x
d

dx
+ 2

)
ηn(t) =

(
t4 − 1

8t

d

dt
− 1

)
ηn(t).

The initial values are computed as follows:

(7.21) ξ0(t) =
1

2

(
1− x d

dx

) ∞∑
m=0

1

m+ 1

(
2m

m

)
1

x2m+1

=
1

2

(
1− z(z2 + 1)

z2 − 1

d

dz

)
z = − z

z2 − 1
= − t

2 − 1

4t
,

and similarly

(7.22) η0(t) = −(t+ 1)2

4t
.

We note that ξn(t) and ηn(t) are Laurent polynomials of degree 2n + 1 for every n ≥ 0.
Since they are defined as functions in x, we have the reciprocity property

(7.23)
ξn(1/t) = −ξn(t)

ηn(1/t) = ηn(t).
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This follows from

t 7−→ 1

t
=⇒ x 7−→ −x.

The annulus amplitude requires (g, n) = (0, 2) Gromov-Witten invariants. They can be
calculated from the (g, n) = (0, 1) invariants using the Topological Recursion Relation [28].
The results are

(7.24) 〈τµ1(ω)τµ2(ω)〉0,2 =

{
1

(m1!)2(m2!)2
1

(m1+m2+1) µ1 = 2m1, µ2 = 2m2

1
(m1!)2(m2!)2

1
(m1+m2+2) µ1 = 2m1 + 1, µ2 = 2m2 + 1.

Theorem 7.7. The annulus amplitude is given by

(7.25) F P1

0,2(z1, z2) = − log(1− z1z2).

Hence we have

(7.26) W P1

0,2(t1, t2) =
dt1 · dt2

(t1 − t2)2
− dx1 · dx2

(x1 − x2)2
=

dt1 · dt2
(t1 + t2)2

.

Proof. From (7.24) we calculate

F P1

0,2(z1, z2) =
∞∑

µ1,µ2=0

〈τµ1(ω)τµ2(ω)〉0,2 µ1!µ2!
1

xµ1+1
1

1

xµ2+1
2

=

∞∑
m1,m2=0

1

(m1 +m2 + 1)

(
2m1

m1

)(
2m2

m2

)
1

x2m1+1
1

1

x2m2+1
2

+
∞∑

m1,m2=0

1

(m1 +m2 + 2)
(2m1 + 1)(2m2 + 1)

(
2m1

m1

)(
2m2

m2

)
1

x2m1+2
1

1

x2m2+2
2

.

Thus we have(
x1

d

dx1
+ x2

d

dx2

)
F P1

0,2(z1, z2)

= −2

∞∑
m1,m2=0

(
2m1

m1

)(
2m2

m2

)
1

x2m1+1
1

1

x2m2+1
2

− 2
∞∑

m1,m2=0

(2m1 + 1)(2m2 + 1)

(
2m1

m1

)(
2m2

m2

)
1

x2m1+2
1

1

x2m2+2
2

= −2ξ0(x1)ξ0(x2)− 2z′(x1)z′(x2)

= −2
z1

z2
1 − 1

z2

z2
2 − 1

− 2
z2

1

z2
1 − 1

z2
2

z2
2 − 1

= −2
z1z2(1 + z1z2)

(z2
1 − 1)(z2

2 − 1)
,

where ξ0(x) is calculated in (7.21), and from (4.6) we know

z′(x) =
dz

dx
=

z2

z2 − 1
.

On the other hand,(
x1

d

dx1
+ x2

d

dx2

)
(− log(1− z1z2))

=

(
z1(z2

1 + 1)

z2
1 − 1

d

dz1
+
z2(z2

2 + 1)

z2
2 − 1

d

dz2

)
(− log(1− z1z2))
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=

(
(z2

1 + 1)

z2
1 − 1

+
(z2

2 + 1)

z2
2 − 1

)
z1z2

1− z1z2
= −2

z1z2(1 + z1z2)

(z2
1 − 1)(z2

2 − 1)
.

Therefore,(
x1

d

dx1
+ x2

d

dx2

)(
F P1

0,2(z1, z2) + log(1− z1z2)
)

=

(
x1

d

dx1
+ x2

d

dx2

)( ∞∑
µ1,µ2=0

〈τµ1(ω)τµ2(ω)〉0,2 µ1!µ2!
1

xµ1+1
1

1

xµ2+1
2

−
∞∑
n=1

1

n

( ∞∑
m=0

Cm
1

x2m+1
1

∞∑
m=0

Cm
1

x2m+1
2

)n)
= 0.

Since the kernel of the Euler differential operator is the constants, and since actual compu-
tation shows that the first few expansion terms of the Laurent series

∞∑
µ1,µ2=0

〈τµ1(ω)τµ2(ω)〉0,2 µ1!µ2!
1

xµ1+1
1

1

xµ2+1
2

−
∞∑
n=1

1

n

( ∞∑
m=0

Cm
1

x2m+1
1

∞∑
m=0

Cm
1

x2m+1
2

)n
are 0, we complete the proof of (7.25). �

Using ξn(t) and ηn(t) of (7.17) and (7.18) and the classical topological recursion relation
[28], we can systematically calculate the Laplace transform of stationary Gromov-Witten
invariants. First let us consider (g, n) = (0, 3). Since the sum of the descendant indices of

〈τµ1(ω)τµ2(ω)τµ3(ω)〉0,3
is even, we have

(7.27)

〈τ2m1(ω)τ2m2(ω)τ2m3(ω)〉0,3 =
1

m2
1m

2
2m

2
3

,

〈τ2m1(ω)τ2m2+1(ω)τ2m3+1(ω)〉0,3 =
(m2 + 1)(m3 + 1)

m2
1(m2 + 1)2(m3 + 1)2

.

The Laplace transform is therefore

(7.28) F P1

0,3(t1, t2, t3) =
∑

µ1µ2µ3≥0

〈τµ1(ω)τµ2(ω)τµ3(ω)〉0,3µ1!µ2!µ3!
1

xµ1+1
1

· 1

xµ2+1
2

· 1

xµ3+1
3

=
∑

m1,m2,m3≥0

(
2m1

m1

)(
2m2

m2

)(
2m3

m3

)
1

x2m1+1
1

· 1

x2m2+1
2

· 1

x2m3+1
3

+
∑

m1,m2,m3≥0

(
2m1

m1

)(
2m2 + 1

m2

)(
2m3 + 1

m3

)
1

x2m1+1
1

· 1

x2m2+2
2

· 1

x2m3+2
3

+
∑

m1,m2,m3≥0

(
2m1 + 1

m1

)(
2m2

m2

)(
2m3 + 1

m3

)
1

x2m1+2
1

· 1

x2m2+1
2

· 1

x2m3+2
3

+
∑

m1,m2,m3≥0

(
2m1 + 1

m1

)(
2m2 + 1

m2

)(
2m3

m3

)
1

x2m1+2
1

· 1

x2m2+2
2

· 1

x2m3+1
3

= ξ0(t1)ξ0(t2)ξ0(t3) + ξ0(t1)η0(t2)η0(t3) + η0(t1)ξ0(t2)η0(t3) + η0(t1)η0(t2)ξ0(t3)

= − 1

16
(t1 + 1)(t2 + 1)(t3 + 1)

(
1− 1

t1t2t3

)
,
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which is indeed a Laurent polynomial. Since it is an odd degree polynomial in ξn(t)’s, we
have the reciprocity

F P1

0,3(1/t1, 1/t2, 1/t3) = −F P1

0,3(t1, t2, t3).

The n = 1 stationary invariants are concretely calculated in [66]. We have

(7.29)

〈τ2d〉1,1 =
1

24

(
1

d!

)2

(2d− 1)

〈τ2d+2〉2,1 =

(
1

d!

)2( 1

5! 42
(2d− 1) +

1

242

(
2d− 1

2

))
〈τ2g−2+2d〉g,1 =

(
1

d!

)2 g∑
`=1

(
2d− 1

`

) ∑
ki>0

k1+···+k`=g

∏̀
i=1

1

(2ki + 1)! 4ki
.

We thus obtain

(7.30) F P1

1,1(t1) =
1

24

∞∑
d=0

(
2d

d

)
(2d− 1)

1

x2d+1
1

=
1

24
(2ξ1(t1)− ξ0(t1))

= − 1

384

(
t31 − 7t1 +

7

t1
− 1

t31

)
.

To calculate the g = 2 case we need to do the following.

(7.31) F P1

2,1(t1) =
∞∑
d=0

(2d+ 2)!

d! d!

(
1

5! 42
(2d− 1) +

1

242

(
2d− 1

2

))
1

x2d+3
1

=

(
d

dx1

)2 ∞∑
d=0

(
2d

d

)(
1

5! 42
(2d− 1) +

1

242
(2d2 − 3d+ 1)

)
1

x2d+1
1

=

(
−(t2 − 1)2

8t

d

dt

)2 [
1

5! 42
(2ξ1(t1)− ξ0(t1)) +

1

242
(2ξ2(t1)− 3ξ1(t1) + ξ0(t1))

]
= − 1

219 · 32 · 5
(t2 − 1)3

t9
(
525t12

1 − 1470t10
1 + 1107t81 + 527t61 + 1107t41 − 1470t21 + 525

)
.

Proposition 7.8. F P1

g,1(t1) is a Laurent polynomial of degree 6g − 3 with the reciprocity

F P1

g,1(1/t1) = −F P1

g,1(t1).

Proof. First we calculate the binomial coefficient(
2d− 1

`

)
=

1

`!
(2d− 1)(2d− 2) · · · (2d− `) =

1

`!

(
2`d` − `(`+ 1)

2
d`−1 + · · ·+ (−1)``!

)
as a polynomial in d, and then replace each di with ξi(t1). The result is a linear combination
of ξ0(t1), . . . , ξ`(t1). Let Ξ`(t1) denote the resulting Laurent polynomial of degree 2` + 1.
Then we have an expression

(7.32) F P1

g,1(t1) =

(
d

dx1

)2g−2 ∞∑
d=0

(
2d

d

) g∑
`=1

(
2d− 1

`

) ∑
ki>0

k1+···+k`=g

∏̀
i=1

1

(2ki + 1)! 4ki
1

x2d+1
1
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=

(
−(t2 − 1)2

8t

d

dt

)2g−2

 g∑
`=1

Ξ`(t1)
∑
ki>0

k1+···+k`=g

∏̀
i=1

1

(2ki + 1)! 4ki

 ,
which is a Laurent polynomial of degree 2(2g−2)+2g+1 = 6g−3. The reciprocity property
follows from (7.23) and the x1 expression of (7.32), where x1 changes to −x1. In particular,
the even order differentiation in x1 is not affected by this change. �

The Eynard-Orantin recursion is for the differential forms W P1

g,n(t1, . . . , tn). We need the
recursion kernel. From (7.13) and (7.26), we compute

(7.33) KP1
(t, t1) =

1

2

∫ −t
t W P1

0,2(·, t1)

W P1

0,1(−t)−W P1

0,1(t)

=
1

2

(
1

t+ t1
+

1

t− t1

)
1

log
(

2(t2+1)
(t+1)2

)
− log

(
2(t+1)
(t−1)2

) (t2 − 1)2

−8tdt
· dt1

=
1

16

(
1

t+ t1
+

1

t− t1

)
1

log
(

(t−1)2

(t+1)2

) (t2 − 1)2

tdt
· dt1.

We note the reciprocity property of the kernel

(7.34) KP1
(1/t, 1/t1) = −KP1

(t, t1).

The topological recursion (2.3) becomes

(7.35) W P1

g,n(t1, t2, . . . , tn) =
1

2πi

∮
γ
KP1

(t, t1)

[
W P1

g−1,n+1(t,−t, t2, . . . , tn)

+

No (0, 1) terns∑
g1+g2=g

ItJ={2,3,...,n}

W P1

g1,|I|+1(t, tI)W
P1

g2,|J |+1(−t, tJ)

]
,

where the residue calculation is taken along the integration contour γ (see Figure 4.1)
consisting of two concentric circles of radius ε and 1/ε for a small ε centered around t = 0,
with the inner circle positively oriented and the outer circle negatively oriented. Since
there is a log singularity in the complex t-plane, we cannot use the residue calculus method
to evaluate the integral at t = t1 and t = −t1. Thus the residue calculation of (7.35) is
performed around the neighborhood of t = 0 and t =∞.

So let us provide two expansion formulas for the kernel KP1
(t, t1), assuming that t1 ∈ C∗

is away from the log singularity of Figure 7.1. The transcendental factor of KP1
(t, t1) has

an expansion

(7.36)
4

t log
(

(t−1)2

(t+1)2

) = − 1

t2
+

1

3
+

4

45
t2 +

44

945
t4 +

428

14175
t6 +

10196

467775
t8 + · · ·

around t = 0. The denominator of the coefficient of t2k−2 is given by

2k+1∏
q=3, prime

q

⌊
2k
q−1

⌋
= 3bkc · 5b

k
2c · 7b

k
3c · · · ,
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which is the same as µ(Lk) of [38, Lemma 1.5.2]. The expansion of 1
t+t1

+ 1
t−t1 at t = 0 is

given by

1

t+ t1
+

1

t− t1
= −2t

1

t21

1

1− t2

t21

= −2

∞∑
n=0

t2n+1

t2n+2
1

.

From the expression (7.33) and the above consideration, we know that around t = 0,

KP1
(t, t1) starts from t−1, and that the coefficient of t2n−1 is a Laurent polynomial in t21

starting from 1
32 t
−(2n+2)
1 up to t−2

1 with rational coefficients. More concretely, we have

(7.37) KP1
(t, t1) =

[
1

t

(
1

32

1

t21

)
+ t

(
1

32

1

t41
− 7

96

1

t21

)
+ t3

(
1

32

1

t61
− 7

96

1

t41
+

71

1440

1

t21

)
+ t5

(
1

32

1

t81
− 7

96

1

t61
+

71

1440

1

t41
− 191

30240

1

t21

)
+ t7

(
1

32

1

t10
1

− 7

96

1

t81
+

71

1440

1

t61
− 191

30240

1

t41
− 23

28350

1

t21

)
+ t9

(
1

32

1

t12
1

− 7

96

1

t10
1

+
71

1440

1

t81
− 191

30240

1

t61
− 23

28350

1

t41
− 233

935550

1

t21

)
+ · · ·

]
1

dt
· dt1.

Similarly, around t =∞ we have

(7.38) KP1
(t, t1) =

[
− t3 1

32
+ t

(
− 1

32
t21 +

7

96

)
+

1

t

(
− 1

32
t41 +

7

96
t21 −

71

1440

)
+

1

t3

(
− 1

32
t61 +

7

96
t41 −

71

1440
t21 +

191

30240

)
+

1

t5

(
− 1

32
t81 +

7

96
t61 −

71

1440
t41 +

191

30240
t21 +

23

28350

)
+

1

t7

(
− 1

32
t10
1 +

7

96
t81 −

71

1440
t61 +

191

30240
t41 +

23

28350
t21 +

233

935550

)
+ · · ·

]
1

dt
· dt1.

Theorem 7.9. The Eynard-Orantin differential form W P1

g,n(t1, . . . , tn) is a Laurent polyno-

mial in t21, t
2
2, . . . , t

2
n of degree 2(3g − 3 + n) in the stable range 2g − 2 + n > 0. It satisfies

the reciprocity property

(7.39) W P1

g,n(1/t1, . . . , 1/tn) = (−1)nW P1

g,n(t1, . . . , tn)

as a meromorphic symmetric n-form. The highest degree terms form a homogeneous poly-
nomial of degree 2(3g − 3 + n), which is given by

(7.40) Ŵ P1

g,n(t1, . . . , tn) =
(−1)n

22g−2+2n

∑
k1,...,kn≥0

〈τk1 · · · τkn〉g,n
n∏
i=1

[
(2k1 + 1)!!

(
ti
2

)2ki

dti

]
.

Indeed it is the same as the generating function of the ψ-class intersection numbers (5.4).

Proof. The statement is proved by induction on 2g − 2 + n using the recursion (7.35).
The initial cases (g, n) = (1, 1) and (g, n) = (0, 3) are easily verified from the concrete
calculations below. Since we are expanding 1

t+t1
+ 1

t−t1 around t = 0 and t = ∞, it is

obvious that the recursion produces a Laurent polynomial in t21, t
2
2, . . . , t

2
n as the result.
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The expression of (7.38) tells us that the residue calculation at infinity increases the

degree by 4. This is because the leading term of the coefficient of t−(2n+1) is t2n+4
1 , and the

residue calculation picks up the term t2n. By the induction hypothesis, the right-hand side
of (7.35) without the kernel term has homogenous degree 2(3g− 3 +n)− 4. The reciprocity
property also follows by induction using (7.34).

The leading terms of W P1

g,n(t1, . . . , tn) satisfy a topological recursion themselves. We can
extract the terms in the kernel that produce the leading terms of the differential forms from
(7.36) or (7.38). The result is

(7.41) KWK(t, t1) = − 1

32
t3
∞∑
k=0

t2n1
t2n

1

dt
· dt1 = −1

2

(
1

t− t1
+

1

t+ t1

)
1

32
t4 · 1

dt
· dt1,

which is identical to [10, Theorem 7.4], and also to (5.10). Since the topological recursion
uniquely determines all the differential forms from the initial condition, and again since the
(g, n) = (0, 3) and (1, 1) cases satisfy (7.40), by induction we obtain (7.40) for all stable
values of (g, n). �

The (g, n) = (1, 1) Eynard-Orantin differential form is computed using (2.4).

(7.42) W P1

1,1(t1) =
1

2πi

∫
γ
KP1

(t, t1)

[
W P1

0,2(t,−t) +
dx · dx1

(x− x1)2

]
= − 1

2πi

∫
γ
KP1

(t, t1)
dt · dt

4t2

= − 1

64

 1

2πi

∫
γ

(
1

t+ t1
+

1

t− t1

)
1

log
(

(t−1)2

(t+1)2

) (t2 − 1)2

t3
dt

 dt1

=

(
− 1

128
t21 +

7

384
+

7

384

1

t21
− 1

128

1

t41

)
dt1.

This is in agreement of W P1

1,1(t1) = dF P1

1,1(t1) and (7.30). From (7.35) we have

(7.43) W P1

0,3(t1, t2, t3)

=
1

2πi

∫
γ
KP1

(t, t1)
[
W P1

0,2(t, t2)W P1

0,2(−t, t3) +W P1

0,2(t, t3)W P1

0,2(−t, t2)
]

= − 1

16

(
1 +

1

t21 t
2
2 t

2
3

)
dt1dt2dt3.

It is also in agreement with (7.28).
Norbury and Scott conjecture the following

Conjecture 7.10 (Norbury-Scott Conjecture [62]). For (g, n) in the stable range we have

(7.44) W P1

g,n(t1, . . . , tn) = d1 · · · dnF P1

g,n(t1, . . . , tn).

The conjecture is verified for g = 0 and g = 1 cases in [62]. We recall that the Eyanrd-
Orantin recursion for simple Hurwitz numbers is essentially the Laplace transform of the
cut-and-join equation [24]. For the case of the counting problem of clean Belyi morphisms
the recursion is the Laplace transform of the edge-contraction operation of Theorem 3.3.

Question 7.11. What is the equation among the stationary Gromov-Witten invariants of
P1 whose Laplace transform is the Eynard-Orantin recursion (7.35)?
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Appendix A. Calculation of the Laplace transform

In this appendix we give the proof of Theorem 4.3.

Proposition A.1. Let us use the xj-variables defined by xj = ewj , and write

WD
g,n(t1, . . . , tn) = wg,n(x1, . . . , xn) dx1 · · · dxn.

Then the Laplace transform of the recursion formula (3.15) is the following differential
recursion:

(A.1) − x1 wg,n(x1, . . . , xn)

=
n∑
j=2

∂

∂xj

(
1

xj − x1
(wg,n−1(x2, . . . , xn)− wg,n−1(x1, x2, . . . , x̂j , . . . , xn))

)
+ wg−1,n+1(x1, x1, x2, . . . , xn) +

∑
g1+g2=g

ItJ={2,...,n}

wg1,|I|+1(x1, xI)wg2,|J |+1(x1, xJ).

Proof. The operation we wish to do is to apply

(−1)n
∑

µ1,...,µn>0

µ2 · · ·µn
n∏
i=1

1

xµi+1
i

to each side of (3.15). Then by (4.13), the left-hand side becomes wg,n(x1, . . . , xn).
The second line of (3.15) is straightforward. Let us just consider the first term, since the

computation of the second term is the same.

(−1)n
∑

µ1,...,µn>0

µ2 · · ·µn
n∏
i=1

1

xµi+1
i

∑
α+β=µ1−2

αβDg−1,n+1(α, β, µ2, . . . , µn)

= − 1

x1
(−1)n+1

∑
µ2,...,µn>0

∑
α,β>0

αβµ2 · · ·µnDg−1,n+1(α, β, µ2 . . . , µn)
1

xα+1
1

· 1

xβ+1
1

n∏
i=2

1

xµi+1
i

= − 1

x1
wg−1,n+1(x1, x1, x2, . . . , xn).

Thus the second line of (3.15) produces

− 1

x1

(
wg−1,n+1(x1, x1, x2, . . . , xn) +

∑
g1+g2=g

ItJ={2,...,n}

wg1,|I|+1(x1, xI)wg2,|J |+1(x1, xJ)

)
.

To calculate the operation on the first line of (3.15), let us fix j > 1 and set ν =
µ1 + µj − 2 ≥ 0. Then

(A.2) (−1)n
∑

µ1,...,µn>0

µ2 · · ·µn(µ1 + µj − 2)

×Dg,n−1(µ1 + µj − 2, µ2, . . . , µ̂j , . . . , µn)

n∏
i=1

1

xµi+1
i

= −
∞∑
ν=0

∑
µ2,...,µ̂j ,...,µn>0

(−1)n−1νµ2 · · · µ̂j · · ·µn
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×Dg,n−1(ν, µ2, . . . , µ̂j , . . . , µn)
1

xν+1
1

∏
i 6=1,j

1

xµi+1
i

ν+1∑
µj=1

µjx
µj−2
1

1

x
µj+1
j

.

Assuming |x1| < |xj |, we calculate

(A.3)
ν+1∑
µj=1

µjx
µj−2
1

1

x
µj+1
j

= − 1

x2
1

∂

∂xj

ν+1∑
µj=0

(
x1

xj

)µj
= − 1

x2
1

∂

∂xj

 1

1− x1
xj

−

(
x1
xj

)ν+2

1− x1
xj


= − 1

x2
1

∂

∂xj

(
1

1− x1
xj

)
+ xν1

∂

∂xj

(
1

xj − x1

1

xν+1
j

)
.

We then substitute (A.3) in (A.2) and obtain

(A.4) (A.2) = wg,n−1(x1, x2, . . . , x̂j , . . . , xn)
1

x2
1

∂

∂xj

(
1

1− x1
xj

)

− 1

x1

∂

∂xj

(
1

xj − x1
wg,n−1(x2, . . . , xj , . . . , xn)

)
= − 1

x1

∂

∂xj

(
1

xj − x1
(wg,n−1(x2, . . . , xj , . . . , xn)− wg,n−1(x1, x2, . . . , x̂j , . . . , xn))

)
.

This completes the proof. �

Proof of Theorem 4.3. When the curve is split into two pieces, the second term of the third
line of (A.1) contains contributions from unstable geometries (g, n) = (0, 1) and (0, 2). We
first separate them out. For g1 = 0 and I = ∅, or g2 = 0 and J = ∅, we have a contribution
of

2w0,1(x1)wg,n(x1, x2, . . . , xn).

Similarly, for g1 = 0 and I = {j}, or g2 = 0 and J = {j}, we have

2
n∑
j=2

w0,2(x1, xj)wg,n−1(x1, . . . , x̂j , . . . , xn).

Since WD
0,1 and WD

0,2 are defined on the spectral curve, it is time for us to switch to the

preferred coordinate t of (4.1) now. We thus introduce

(A.5) WD
g,n(t1, . . . , tn) = wDg,n(t1, . . . , tn) dt1 · · · dtn = wg,n(x1, . . . , xn) dx1 · · · dxn.

Since w0,1(x) = −z(x), we have

w0,1(x) = − t+ 1

t− 1

w0,2(x1, x2) =
1

(t1 + t2)2

(t21 − 1)2

8t1

(t22 − 1)2

8t2

wg,n(x1, . . . , xn) = (−1)nwDg,n(t1, . . . , tn)
n∏
i=1

(t2i − 1)2

8ti
.

Thus (A.1) is equivalent to

2

(
t21 + 1

t21 − 1
− t1 + 1

t1 − 1

)
wDg,n(t1, . . . , tn)
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=
n∑
j=2

(
(t21 − 1)2(t2j − 1)2

16(t21 − t2j )2

8tj
(t2j − 1)2

wDg,n−1(t1, . . . , t̂j , . . . , tn)

+
∂

∂tj

(
(t21 − 1)(t2j − 1)

4(t21 − t2j )
8t1

(t21 − 1)2

(t2j − 1)2

8tj
wDg,n−1(t2, . . . , tn)

))

+
(t21 − 1)2

8t1

wDg−1,n+1(t1, t1, t2, . . . , tn) +
stable∑

g1+g2=g
ItJ={2,...,n}

wDg1,|I|+1(t1, tI)w
D
g2,|J |+1(t1, tJ)


+ 2

n∑
j=2

1

(t1 + tj)2

(t21 − 1)2

8t1
wDg,n−1(t1, . . . , t̂j , . . . , tn)

=
n∑
j=2

((
tj(t

2
1 − 1)2

2(t21 − t2j )2
+

1

(t1 + tj)2

(t21 − 1)2

4t1

)
wDg,n−1(t1, . . . , t̂j , . . . , tn)

+
t1

t21 − 1

∂

∂tj

(
(t2j − 1)3

4tj(t21 − t2j )
wDg,n−1(t2, . . . , tn)

))

+
(t21 − 1)2

8t1

wDg−1,n+1(t1, t1, t2, . . . , tn) +
stable∑

g1+g2=g
ItJ={2,...,n}

wDg1,|I|+1(t1, tI)w
D
g2,|J |+1(t1, tJ)

 .

Since

2

(
t21 + 1

t21 − 1
− t1 + 1

t1 − 1

)
= − 4t1

t21 − 1
,

we obtain

(A.6) wDg,n(t1, . . . , tn) = −
n∑
j=2

(
∂

∂tj

(
(t2j − 1)3

16tj(t21 − t2j )
wDg,n−1(t2, . . . , tn)

)

+
(t21 − 1)3

16t21

t21 + t2j
(t21 − t2j )2

wDg,n−1(t1, . . . , t̂j , . . . , tn)

)

− (t21 − 1)3

32t21

wDg−1,n+1(t1, t1, t2, . . . , tn) +

stable∑
g1+g2=g

ItJ={2,...,n}

wDg1,|I|+1(t1, tI)w
D
g2,|J |+1(t1, tJ)

 .

Now let us compute the integral

(A.7) WD
g,n(t1, . . . , tn) = − 1

64

1

2πi

∫
γ

(
1

t+ t1
+

1

t− t1

)
(t2 − 1)3

t2
· 1

dt
· dt1

×

[
n∑
j=2

(
WD

0,2(t, tj)Wg,n−1(−t, t2, . . . , t̂j , . . . , tn) +WD
0,2(−t, tj)Wg,n−1(t, t2, . . . , t̂j , . . . , tn)

)
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+WD
g−1,n+1(t,−t, t2, . . . , tn) +

stable∑
g1+g2=g

ItJ={2,3,...,n}

WD
g1,|I|+1(t, tI)W

D
g2,|J |+1(−t, tJ)

]
.

Recall that For 2g−2+n > 0, wDg,n(t1, . . . , tn) is a Laurent polynomial in t21, . . . , t
2
n. Thus the

third line of (A.7) is immediately calculated because the integration contour γ of Figure 4.1
encloses ±t1 and contributes residues with the negative sign. The result is exactly the last
line of (A.6). Similarly, since

WD
0,2(t, tj)Wg,n−1(−t, t2, . . . , t̂j , . . . , tn) +WD

0,2(−t, tj)Wg,n−1(t, t2, . . . , t̂j , . . . , tn)

= −
(

1

(t+ tj)2
+

1

(t− tj)2

)
wDg,n−1(t, t2, . . . , t̂j , . . . , tn) dt dt dt2 · · · d̂tj · · · dtn,

the residues at ±t1 contributes

−
(t21 − 1)3(t21 + t2j )

16t21(t21 − t2j )2
wDg,n−1(t1, . . . , t̂j , . . . , tn).

This is the same as the second line of the right-hand side of (A.6).
Within the contour γ, there are second order poles at ±tj for each j ≥ 2 that come from

WD
0,2(±t, tj). Note that WD

0,2(t, tj) acts as the Cauchy differentiation kernel. We calculate

1

64

1

2πi

∫
γ

(
1

t+ t1
+

1

t− t1

)
(t2 − 1)3

t2

n∑
j=2

(
wD0,2(t, tj)w

D
g,n−1(−t, t2, . . . , t̂j , . . . , tn)

+ wD0,2(−t, tj)wg,n−1(t, t2, . . . , t̂j , . . . , tn)

)
= − 1

32

∂

∂tj

((
1

tj + t1
+

1

tj − t1

)
(t2j − 1)3

t2j
wDg,n−1(tj , t2, . . . , t̂j , . . . , tn)

)

= − 1

16

∂

∂tj

(
1

t2j − t21

(t2j − 1)3

tj
wDg,n−1(tj , t2, . . . , t̂j , . . . , tn)

)
.

This gives the first line of the right-hand side of (A.6). We have thus completes the proof
of Theorem 4.3. �
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